Added modbus registers and stuff.

This commit is contained in:
David Žaitlík
2022-06-17 23:15:59 +02:00
parent eaab788dde
commit 4b3a9927ba
57 changed files with 9363 additions and 9921 deletions

View File

@@ -25,6 +25,7 @@ config_read(&config);
#include "stdint.h"
#include "stm32l0xx.h"
#include "ltr329.h"
/* DESCRIPTION OF THE DATA STRUCTURE */
/*
* Data are divided into two groups:
@@ -120,15 +121,11 @@ extern const uint8_t config_baudrates_length;
typedef struct
{
/* LED CONFIG */
uint8_t led_on;
uint16_t led_brightness;
uint8_t led_smooth;
uint16_t led_co2_alert_limit1;
uint16_t led_co2_alert_limit2;
/* SCD4x Temperature sensor offset */
int16_t scd4x_t_offset;
/* LTR329 CONFIG */
ltr329_gain_t ltr329_gain;
ltr329_als_mode_t ltr329_mode;
ltr329_integration_time_t ltr329_integ_time;
ltr329_measurement_rate_t ltr329_meas_rate;
/* MODBUS CONFIG */
uint16_t modbus_addr;
@@ -136,6 +133,7 @@ typedef struct
} config_t;
/* const uint32_t baudrates [] = {19200, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200}; */
int8_t config_read(config_t *config);

View File

@@ -1,22 +0,0 @@
/*
* crc.h
*
* Created on: Jun 9, 2021
* Author: user
*/
#ifndef INC_CRC8_H_
#define INC_CRC8_H_
#include "stdint.h"
/*
* Definitions & macros
*/
#define CRC8_POLYNOMIAL ((uint8_t)0x31)
#define CRC8_INIT ((uint8_t)0xFF)
uint8_t crc8_calculate(const uint8_t *data, uint16_t count);
#endif /* INC_CRC8_H_ */

View File

@@ -1,93 +0,0 @@
/*
* ltr329.h
*
* Created on: May 22, 2022
* Author: david
*/
#ifndef INC_LTR329_H_
#define INC_LTR329_H_
#include "stdint.h"
#include "stm32l0xx_ll_i2c.h"
#include "stm32l0xx_ll_utils.h"
#include "i2c.h"
#define LTR329_I2C_ADDRESS 0x29
/*
* Return values
*/
#define LTR329_OK 0
#define LTR329_ERROR -1 // generic error
/* LTR-329ALS-01 Registers */
/* Datasheet: https://optoelectronics.liteon.com/upload/download/DS86-2014-0006/LTR-329ALS-01_DS_V1.pdf */
typedef enum
{
LTR329_ALS_CONTR = 0x80, /* RW */
LTR329_ALS_MEAS_RATE = 0x85, /* RW */
LTR329_PART_ID = 0x86, /* R */
LTR329_MANUFAC_ID = 0x87, /* R */
LTR329_ALS_DATA_CH1_0 = 0x88, /* R */
LTR329_ALS_DATA_CH1_1 = 0x89, /* R */
LTR329_ALS_DATA_CH0_0 = 0x8A, /* R */
LTR329_ALS_DATA_CH0_1 = 0x8B, /* R */
LTR329_ALS_STATUS = 0x8C /* R */
} ltr329_cmd_t;
/* Bit masks for ALS Mode */
typedef enum
{
LTR329_MODE_STAND_BY = 0b00000000, /* DEFAULT */
LTR329_MODE_ACTIVE = 0b00000001
} ltr329_als_mode_t;
/* Bit masks for Gain settings */
typedef enum
{
LTR329_GAIN_1X = 0b00000000, /* DEFAULT */
LTR329_GAIN_2X = 0b00000100,
LTR329_GAIN_4X = 0b00001000,
LTR329_GAIN_8X = 0b00001100,
LTR329_GAIN_48X = 0b00011000,
LTR329_GAIN_96X = 0b00011100,
LTR329_GAIN_RESERVED1 = 0b00010000,
LTR329_GAIN_RESERVED2 = 0b00010100
} ltr329_gain_t;
/* Bit masks for Integration Time settings */
typedef enum
{
LTR329_INTEGRATION_50MS = 0b00001000,
LTR329_INTEGRATION_100MS = 0b00000000, /* DEFAULT */
LTR329_INTEGRATION_150MS = 0b00100000,
LTR329_INTEGRATION_200MS = 0b00010000,
LTR329_INTEGRATION_250MS = 0b00101000,
LTR329_INTEGRATION_300MS = 0b00110000,
LTR329_INTEGRATION_350MS = 0b00111000,
LTR329_INTEGRATION_400MS = 0b00011000
} ltr329_integration_time_t;
/* Bit masks for Measurement Rate settings */
typedef enum
{
LTR329_MEAS_RATE_50MS = 0b00000000,
LTR329_MEAS_RATE_100MS = 0b00000001,
LTR329_MEAS_RATE_200MS = 0b00000010,
LTR329_MEAS_RATE_500MS = 0b00000011, /* DEFAULT */
LTR329_MEAS_RATE_1000MS = 0b00000100,
LTR329_MEAS_RATE_2000MS = 0b00000111
} ltr329_measurement_rate_t;
static int8_t ltr329_read_register (ltr329_cmd_t register_addr, uint8_t *register_data );
static int8_t ltr329_write_register (ltr329_cmd_t register_addr, uint8_t register_data);
int8_t ltr329_write_settings (ltr329_gain_t gain, ltr329_als_mode_t mode, ltr329_integration_time_t integ_time, ltr329_measurement_rate_t meas_rate);
int8_t ltr329_read_settings (ltr329_gain_t *gain, ltr329_als_mode_t *mode, ltr329_integration_time_t *integ_time, ltr329_measurement_rate_t *meas_rate);
int8_t ltr329_sw_reset( void );
int8_t ltr329_measure (uint16_t *data_ch0, uint16_t *data_ch1);
int8_t ltr329_read_status_register(uint8_t *data_valid, uint8_t *new_data, ltr329_gain_t *gain);
int8_t ltr329_read_device_info (uint8_t *manufacturer_id, uint8_t *part_id);
#endif /* INC_LTR329_H_ */

View File

@@ -1,231 +0,0 @@
/*
* modbus.h
*
* Created on: Jul 18, 2021
* Author: user
*
* Modbus slave RTU library (does NOT support ASCII and TCP)
*
* Useful links:
* https://www.picotech.com/library/oscilloscopes/modbus-serial-protocol-decoding
* https://ipc2u.com/articles/knowledge-base/modbus-rtu-made-simple-with-detailed-descriptions-and-examples/
* https://modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
* https://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf
*
* Note that byte order is big endian.
*
* USAGE:
*
* 1) Implement functions modbus_callback_function() and modbus_uart_transmit_function()
* - modbus_uart_transmit_function() sends data via UART
* - modbus_callback_function() does the real work: read sensors, set outputs...
* note that when filling buffers (e.g. input_registers[]) user must
* ensure that all data is big-endian
* These functions are implementation-specific.
* 2) Set device address (variable modbus_device_address); you can do this either
* - setting modbus_device_address directly (modbus.h needs to be included, duh)
* - using modbus_set_device_address(uint8_t address) function
* Or you can leave address as-is (MODBUS_DEFAULT_SLAVE_ADDRESS) and set it via
* Modbus during runtime
* 3) Call modbus_process_msg() after message reception; you need to observe Modbus RTU timing:
* - pauses between chars in frame are less or equal to 1.5 char
* - pauses between frames are at least 3.5 chars (of silence)
* For more information see section 2.5.1.1 (MODBUS Message RTU Framing)
* in "MODBUS over Serial Line: Specification and Implementation Guide"
*
*/
#ifndef SRC_MODBUS_H_
#define SRC_MODBUS_H_
#include "stdint.h"
#include "stddef.h"
#include "string.h"
/*
* Defines & macros
*/
#define MODBUS_BROADCAST_ADDR 0
#define MODBUS_DEFAULT_SLAVE_ADDRESS 247 /* 255 may be used for bridge device */
/* minimal frame length is 4 bytes: 1 B slave address, 1 B function code, 2 B CRC */
#define MODBUS_MINIMAL_FRAME_LEN 4
#define MODBUS_MINIMAL_READWRITE_LEN 4
#define MODBUS_MINIMAL_WRITE_MULTIPLE_LEN 5
#define MODBUS_READ_DEVICE_ID_REQUEST_LEN 4
#define MODBUS_READ_DEVICE_ID_RESPONSE_HEADER_LEN 4
#define MODBUS_READ_DEVICE_ID_RESPONSE_OFFSET 3
#define MODBUS_MAX_RTU_FRAME_SIZE 256
#define MODBUS_BUFFER_SIZE MODBUS_MAX_RTU_FRAME_SIZE /* alias */
#define MODBUS_ERROR_FLAG 0x80
#define MODBUS_MAX_REGISTERS 125
/* read device id constants */
#define MODBUS_MEI 0x0E
#define MODBUS_DEVICE_ID_INDIVIDUAL_ACCESS_FLAG 0x80
#define MODBUS_MORE_FOLLOWS 0xFF
#define MODBUS_NO_MORE_FOLLOWS 0x00
#define MODBUS_BASIC_OBJECT_COUNT 3
#define MODBUS_REGULAR_OBJECT_COUNT 7
/*
* Return values
*/
#define MODBUS_OK 0
#define MODBUS_ERROR -1 // generic error
#define MODBUS_ERROR_CRC -2 // checksum failed
#define MODBUS_ERROR_FRAME_INVALID -3 // invalid frame format / length
#define MODBUS_ERROR_OUT_OF_BOUNDS -4 // requested register is out of bounds
#define MODBUS_ERROR_FUNCTION_NOT_IMPLEMENTED -5 // function not implemented in callback
#define MODBUS_ERROR_REGISTER_NOT_IMPLEMENTED -6 // register not implemented in callback
#define MODBUS_ERROR_DEVICE_ID_NOT_IMPLEMENTED -7
/*
* Data types
*/
/* Public functions codes (Modbus Application protocol specification, section 5.1) */
typedef enum {
/* single bit access functions */
MODBUS_READ_COILS = 1,
MODBUS_READ_DO = 1, // alias
MODBUS_READ_DISCRETE_INPUTS = 2,
MODBUS_READ_DI = 2, // alias
MODBUS_WRITE_SINGLE_COIL = 5,
MODBUS_WRITE_SINGLE_DO = 5, // alias
MODBUS_WRITE_MULTIPLE_COILS = 15,
MODBUS_WRITE_MULTIPLE_DO = 15, // alias
/* 16-bit access functions */
MODBUS_READ_HOLDING_REGISTERS = 3,
MODBUS_READ_AO = 3, // alias
MODBUS_READ_INPUT_REGISTERS = 4,
MODBUS_READ_AI = 4, // alias
MODBUS_WRITE_SINGLE_REGISTER = 6,
MODBUS_WRITE_SINGLE_AO = 6, // alias
MODBUS_WRITE_MULTIPLE_REGISTERS = 16,
MODBUS_WRITE_MULTIPLE_AO = 16, // alias
MODBUS_MASK_WRITE_REGISTER = 22,
MODBUS_READ_WRITE_MULTIPLE_REGISTERS = 23,
MODBUS_READ_FIFO_QUEUE = 24,
/* file record access */
MODBUS_READ_FILE_RECORD = 20,
MODBUS_WRITE_FILE_RECORD = 21,
/* diagnostics */
MODBUS_READ_EXCEPTION_STATUS = 7,
MODBUS_DIAGNOSTIC = 8, /* sub codes: 00-18,20 */
MODBUS_GET_COM_EVENT_COUNTER = 11,
MODBUS_GET_COM_EVENT_LOG = 12,
MODBUS_REPORT_SLAVE_ID = 17,
MODBUS_READ_DEVICE_IDENTIFICATION = 43, /* sub codes: 14 */
} modbus_function_code_t;
typedef enum {
MODBUS_EXCEPTION_ILLEGAL_FUNCTION = 1,
MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS = 2,
MODBUS_EXCEPTION_ILLEGAL_REGISTER_QUANTITY = 2,
MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE = 3,
MODBUS_EXCEPTION_SLAVE_DEVICE_FAILURE = 4,
MODBUS_EXCEPTION_ACKNOWLEDGE = 5,
MODBUS_EXCEPTION_SLAVE_DEVICE_BUSY = 6,
MODBUS_EXCEPTION_MEMORY_PARITY_ERROR = 8,
MODBUS_EXCEPTION_GATEWAY_PATH_UNAVAILABLE = 10,
MODBUS_EXCEPTION_GATEWAY_TARGET_DEVICE_FAILED_TO_RESPOND = 11,
MODBUS_EXCEPTION_ILLEGAL_DEVICE_ID_CODE = 3
} modbus_exception_code_t;
typedef struct {
modbus_function_code_t function_code : 8;
uint16_t register_address; // e.g. first register of A0: 0
uint16_t register_number; // e.g. first register of A0: 40001
uint8_t register_count; // number of registers to be read/written
modbus_exception_code_t exception;
uint8_t broadcast; // 1 if broadcast, 0 otherwise
union {
uint8_t buffer8b[MODBUS_MAX_RTU_FRAME_SIZE];
uint16_t buffer16b[MODBUS_MAX_RTU_FRAME_SIZE/2];
uint16_t input_registers[MODBUS_MAX_REGISTERS];
uint16_t holding_registers[MODBUS_MAX_REGISTERS];
int16_t input_registers_signed[MODBUS_MAX_REGISTERS];
int16_t holding_registers_signed[MODBUS_MAX_REGISTERS];
};
/* process device id */
uint8_t read_device_id_code;
uint8_t object_id;
} modbus_transaction_t;
typedef enum {
MODBUS_DO_START_NUMBER = 1, // Discrete output coils
MODBUS_DO_END_NUMBER = 9999,
MODBUS_DI_START_NUMBER = 10001, // Discrete input contacts
MODBUS_DI_END_NUMBER = 19999,
MODBUS_AI_START_NUMBER = 30001, // Analog input registers
MODBUS_AI_END_NUMBER = 39999,
MODBUS_AO_START_NUMBER = 40001, // Analog output (holding registers)
MODBUS_AO_END_NUMBER = 49999
} modbus_register_number_t;
typedef enum {
MODBUS_CONFORMITY_BASIC = 1,
MODBUS_CONFORMITY_REGULAR = 2,
MODBUS_CONFORMITY_EXTENDED = 3,
MODBUS_INDIVIDUAL_ACCESS = 4 /* not actually part of conformity, but I'll keep it here anyway */
} modbus_conformity_level_t;
/* Device ID datatypes */
#define MODBUS_DEVICE_ID_OBJECT_NUM 7
typedef struct {
union {
struct {
/* Basic category (mandatory part) */
char *VendorName;
char *ProductCode;
char *MajorMinorRevision;
/* Regular category (optional part) */
char *VendorUrl;
char *ProductName;
char *ModelName;
char *UserApplicationName;
/* Extended category (optional part) */
// Nothing here yet!
} object_name;
char *object_id[MODBUS_DEVICE_ID_OBJECT_NUM];
};
uint8_t conformity_level;
} modbus_device_id_t;
/*
* Global variables
*/
/* device address: declared in modbus.c */
extern uint8_t modbus_slave_address;
/* shared modbus buffer; defined in modbus.c; may be used elsewhere in code */
extern uint8_t modbus_buffer[];
/* modbus device id struct */
extern modbus_device_id_t *modbus_device_id;
/*
* Function prototypes
*/
/* process message: should be called in when modbus message was received (e.g. in main.c)
* modbus_process_msg() may call following functions:
* - modbus_callback_function() if data readout is requested
* - modbus_uart_transmit_function() if response is required
* Both functions have to be implemented by user.
*/
int8_t modbus_slave_process_msg(const uint8_t *buffer, int len);
int8_t modbus_slave_init_device_id(modbus_device_id_t *device_id);
int8_t modbus_slave_set_address(uint8_t address);
/* modbus callback function type - should be implemented by user (e.g. in main.c) */
int8_t modbus_slave_callback(modbus_transaction_t *transaction);
/* UART transmit function type - should be implemented by user (e.g. in main.c) */
int8_t modbus_transmit_function(uint8_t *buffer, uint16_t data_len);
#endif /* SRC_MODBUS_H_ */

View File

@@ -1,57 +0,0 @@
/*
* sht4x.h
*
* Created on: Jun 8, 2021
* Author: user
*/
#ifndef INC_SHT4X_H_
#define INC_SHT4X_H_
#include "stdint.h"
#include "stm32l0xx_ll_i2c.h"
#include "stm32l0xx_ll_utils.h"
#include "i2c.h"
#include "crc8.h"
/*
* Defines & macros
*/
#define SHT4X_I2C_ADDRESS 0x44
/*
* Return values
*/
#define SHT4X_OK 0
#define SHT4X_ERROR -1 // generic error
#define SHT4X_CRC8_ERROR -2 // checksum failed
/*
* Data types
*/
typedef enum {
SHT4X_START_MEAS_HIGH_PRECISION = 0xFD,
SHT4X_START_MEAS_MEDIUM_PRECISION = 0xF6,
SHT4X_START_MEAS_LOW_PRECISION = 0xE0,
SHT4X_READ_SERIAL = 0x89,
SHT4X_SOFT_RESET = 0x94,
SHT4X_HEATER_200_mW_1_s = 0x39,
SHT4X_HEATER_200_mW_01_s = 0x32,
SHT4X_HEATER_110_mW_1_s = 0x2F,
SHT4X_HEATER_110_mW_01_s = 0x24,
SHT4X_HEATER_20_mW_1_s = 0x1E,
SHT4X_HEATER_20_mW_01_s = 0x15
} sht4x_cmd_t;
/*
* Function prototypes
*/
int8_t sht4x_send_cmd(sht4x_cmd_t cmd);
int8_t sht4x_read_data(uint8_t *buffer, int len);
int8_t sht4x_measure(int16_t *temperature, uint16_t *relative_humidity);
#endif /* INC_SHT4X_H_ */

View File

@@ -44,23 +44,11 @@ int8_t config_read(config_t *config)
{
config->modbus_addr = *(uint16_t *) (CONFIG_EEPROM_ADDR_MODBUS_ADDR);
config->baudrate_index = *(uint16_t *) (CONFIG_EEPROM_ADDR_BAUDRATE_INDEX);
config->led_on = *(uint16_t *) (CONFIG_EEPROM_ADDR_LED_ON);
config->led_brightness = *(uint16_t *) (CONFIG_EEPROM_ADDR_LED_BRIGHTNESS);
config->led_smooth = *(uint16_t *) (CONFIG_EEPROM_ADDR_LED_SMOOTH);
config->led_co2_alert_limit1 = *(uint16_t *) (CONFIG_EEPROM_ADDR_LED_ALERT1);
config->led_co2_alert_limit2 = *(uint16_t *) (CONFIG_EEPROM_ADDR_LED_ALERT2);
config->scd4x_t_offset = *(int16_t *) (CONFIG_EEPROM_ADDR_SCD4x_T_OFFSET);
/* Check if the EEPROM is initialized - do not check:
* LED ON
* LED SMOOTH
* SCD4x T OFFSET
* BAUDRATE INDEX
* those can be 0 */
if ((config->modbus_addr == EEPROM_EMPTY_BYTE) ||
(config->led_co2_alert_limit1 == EEPROM_EMPTY_BYTE) ||
(config->led_co2_alert_limit2 == EEPROM_EMPTY_BYTE) ||
(config->led_brightness == EEPROM_EMPTY_BYTE))
if (config->modbus_addr == EEPROM_EMPTY_BYTE)
{
return CONFIG_ERROR;
}
@@ -82,48 +70,13 @@ int8_t config_write(config_t *config)
{
return EEPROM_WRITE_ERROR;
}
/* Write BAUDRATE */
if (eeprom_program_halfword(CONFIG_EEPROM_ADDR_BAUDRATE_INDEX, config->baudrate_index) != EEPROM_OK)
{
return EEPROM_WRITE_ERROR;
}
/* Write LED ON */
if (eeprom_program_byte(CONFIG_EEPROM_ADDR_LED_ON, config->led_on) != EEPROM_OK)
{
return EEPROM_WRITE_ERROR;
}
/* Write LED BRIGHTNESS */
if (eeprom_program_halfword(CONFIG_EEPROM_ADDR_LED_BRIGHTNESS, config->led_brightness) != EEPROM_OK)
{
return EEPROM_WRITE_ERROR;
}
/* Write LED SMOOTH */
if (eeprom_program_byte(CONFIG_EEPROM_ADDR_LED_SMOOTH, config->led_smooth) != EEPROM_OK)
{
return EEPROM_WRITE_ERROR;
}
/* Write LED CO2 ALERT LIMIT 1 */
if (eeprom_program_halfword(CONFIG_EEPROM_ADDR_LED_ALERT1, config->led_co2_alert_limit1) != EEPROM_OK)
{
return EEPROM_WRITE_ERROR;
}
/* Write LED CO2 ALERT LIMIT 2 */
if (eeprom_program_halfword(CONFIG_EEPROM_ADDR_LED_ALERT2, config->led_co2_alert_limit2) != EEPROM_OK)
{
return EEPROM_WRITE_ERROR;
}
/* Write LED SCD4x TEMPERATURE OFFSET */
if (eeprom_program_halfword(CONFIG_EEPROM_ADDR_SCD4x_T_OFFSET, config->scd4x_t_offset) != EEPROM_OK)
{
return EEPROM_WRITE_ERROR;
}
/* Lock EEPROM*/
if (eeprom_lock() != EEPROM_OK)
{

View File

@@ -1,28 +0,0 @@
/*
* crc.c
*
* Created on: Jun 9, 2021
* Author: user
*/
#include "crc8.h"
/* Stolen from Sensirion SCD4x datasheet, section 3.11 */
uint8_t crc8_calculate(const uint8_t *data, uint16_t count)
{
uint16_t current_byte;
uint8_t crc = CRC8_INIT;
uint8_t crc_bit;
/* calculates 8-Bit checksum with given polynomial */
for (current_byte = 0; current_byte < count; ++current_byte) {
crc ^= (data[current_byte]);
for(crc_bit = 8; crc_bit > 0; --crc_bit) {
if (crc & 0x80) {
crc =(crc << 1) ^ CRC8_POLYNOMIAL;
} else {
crc = (crc << 1);
}
}
}
return crc;
}

View File

@@ -1,202 +0,0 @@
/*
* ltr329.c
*
* Created on: May 22, 2022
* Author: david
*/
#include "ltr329.h"
#include "main.h" /* for uart_disable_interrupts() */
static int8_t ltr329_read_register (ltr329_cmd_t register_addr, uint8_t *register_data )
{
uint8_t tx_buffer[1];
uint8_t rx_buffer[1];
int result;
// start measurement
tx_buffer[0] = register_addr;
/* disable interrupts to prevent modbus/i2c conflict */
uart_disable_interrupts();
result = i2c_transmit(LTR329_I2C_ADDRESS<<1, tx_buffer, 1);
uart_enable_interrupts();
if (result != I2C_OK) {
return LTR329_ERROR;
}
LL_mDelay(10); /* 10 ms should be enough */
/* read out */
uart_disable_interrupts();
result = i2c_receive(LTR329_I2C_ADDRESS<<1, rx_buffer, 1);
uart_enable_interrupts();
if (result != I2C_OK) {
return LTR329_ERROR;
}
*register_data = rx_buffer[0];
return LTR329_OK;
}
static int8_t ltr329_write_register (ltr329_cmd_t register_addr, uint8_t register_data)
{
uint8_t tx_buffer[2];
int result;
// start measurement
tx_buffer[0] = register_addr;
tx_buffer[1] = register_data;
/* disable interrupts to prevent modbus/i2c conflict */
uart_disable_interrupts();
result = i2c_transmit(LTR329_I2C_ADDRESS<<1, tx_buffer, 2);
uart_enable_interrupts();
if (result != I2C_OK) {
return LTR329_ERROR;
}
return LTR329_OK;
}
int8_t ltr329_write_settings (ltr329_gain_t gain, ltr329_als_mode_t mode, ltr329_integration_time_t integ_time, ltr329_measurement_rate_t meas_rate)
{
int8_t result;
/* Write Gain and ALS Mode */
result = ltr329_write_register(LTR329_ALS_CONTR, (gain | mode));
if (result != LTR329_OK)
{
return LTR329_ERROR;
}
/* Write Integration Time and Measurement Rate */
result = ltr329_write_register(LTR329_ALS_MEAS_RATE, (integ_time | meas_rate));
if (result != LTR329_OK)
{
return LTR329_ERROR;
}
return LTR329_OK;
}
int8_t ltr329_read_settings (ltr329_gain_t *gain, ltr329_als_mode_t *mode, ltr329_integration_time_t *integ_time, ltr329_measurement_rate_t *meas_rate)
{
int8_t result;
uint8_t control_register_data;
uint8_t rate_register_data;
result = ltr329_read_register(LTR329_ALS_CONTR, &control_register_data);
if (result != LTR329_OK)
{
return LTR329_ERROR;
}
result = ltr329_read_register(LTR329_ALS_MEAS_RATE, &rate_register_data);
if (result != LTR329_OK)
{
return LTR329_ERROR;
}
uint8_t control_register_gain_mask = 0b00011100;
uint8_t control_register_mode_mask = 0b00000001;
uint8_t rate_register_int_time_mask = 0b00111000;
uint8_t rate_register_rate_mask = 0b00000111;
/* Return Registers Values */
/* TODO: This might not be safe */
*gain = control_register_data & control_register_gain_mask;
*mode = control_register_data & control_register_mode_mask;
*integ_time = rate_register_data & rate_register_int_time_mask;
*meas_rate = rate_register_data & rate_register_rate_mask;
return LTR329_OK;
}
int8_t ltr329_sw_reset( void )
{
int8_t result;
/* Write Gain and ALS Mode */
result = ltr329_write_register(LTR329_ALS_CONTR, 0b00000010);
if (result != LTR329_OK)
{
return LTR329_ERROR;
}
return LTR329_OK;
}
int8_t ltr329_measure (uint16_t *data_ch0, uint16_t *data_ch1)
{
uint8_t ch0_l, ch0_h, ch1_l, ch1_h;
int result;
result = ltr329_read_register(LTR329_ALS_DATA_CH0_0, &ch0_l);
if (result != LTR329_OK)
{
return LTR329_ERROR;
}
result = ltr329_read_register(LTR329_ALS_DATA_CH0_1, &ch0_h);
if (result != LTR329_OK)
{
return LTR329_ERROR;
}
result = ltr329_read_register(LTR329_ALS_DATA_CH1_0, &ch1_l);
if (result != LTR329_OK)
{
return LTR329_ERROR;
}
result = ltr329_read_register(LTR329_ALS_DATA_CH1_1, &ch1_h);
if (result != LTR329_OK)
{
return LTR329_ERROR;
}
*data_ch0 = (ch0_h << 8) + ch0_l;
*data_ch1 = (ch1_h << 8) + ch1_l;
return LTR329_OK;
}
int8_t ltr329_read_status_register(uint8_t *data_valid, uint8_t *new_data, ltr329_gain_t *gain)
{
int8_t result;
uint8_t status_register_data;
result = ltr329_read_register(LTR329_ALS_STATUS, &status_register_data);
if (result != LTR329_OK)
{
return LTR329_ERROR;
}
/* Check data valid */
uint8_t data_invalid_mask = 0b10000000;
if ((status_register_data & data_invalid_mask) == data_invalid_mask)
{
*data_valid = 0;
} else
{
*data_valid = 1;
}
/* Check if there is new data */
uint8_t data_status_mask = 0b00000100;
if ((status_register_data & data_status_mask) == data_status_mask)
{
*new_data = 1;
} else
{
*new_data = 0;
}
/* Check Gain */
/* TODO: This might not be safe */
uint8_t gain_mask = 0b01110000;
*gain = status_register_data & gain_mask;
return LTR329_OK;
}
int8_t ltr329_read_device_info (uint8_t *manufacturer_id, uint8_t *part_id)
{
int8_t result;
result = ltr329_read_register(LTR329_MANUFAC_ID, manufacturer_id);
if (result != LTR329_OK)
{
return LTR329_ERROR;
}
result = ltr329_read_register(LTR329_PART_ID, part_id);
if (result != LTR329_OK)
{
return LTR329_ERROR;
}
return LTR329_OK;
}

View File

@@ -74,27 +74,26 @@ enum
{
REGISTER_NUM_T = 30010, /* deg C */
REGISTER_NUM_T_F = 30011, /* deg F */
REGISTER_NUM_RH = 30012 /* %, from SHT4x */
REGISTER_NUM_RH = 30012, /* %, from SHT4x */
REGISTER_NUM_LIGHT_INTENSITY_0 = 30013, /* ticks, from LTR329 */ /*TODO: Find out what it is */
REGISTER_NUM_LIGHT_INTENSITY_1 = 30014, /* ticks, from LTR329 */ /*TODO: Find out what it is */
REGISTER_NUM_DEVICE_IDENTIFIER = 30100
/* VOC Index has initial blackout beriod, when the data is not ready. VOC index is 0 during this period */
} data_registers_numbers;
enum
{
REGISTER_NUM_LTR329_GAIN = 40001,
REGISTER_NUM_LTR329_MEAS_RATE = 40002,
REGISTER_NUM_LTR329_INTEGRATION_TIME = 40003,
REGISTER_NUM_LTR329_MODE = 40004,
/* TODO: Change registers to start with the modbus specific settings? */
/* TODO: Seal the gap */
REGISTER_NUM_MODBUS_ADDR = 40007,
REGISTER_NUM_BAUDRATE = 40008,
REGISTER_NUM_RESET_DEVICE = 40100
} config_registers_numbers;
enum
{
REGISTER_NUM_VENDOR_NAME = 30010,
REGISTER_NUM_PRODUCT_CODE = 30011,
REGISTER_NUM_REVISION = 30012,
REGISTER_NUM_PRODUCT_NAME = 30013,
REGISTER_NUM_SERIAL_NUMBER = 30014
} identification_registers_numbers;
/* Variables to store the measured data */
int16_t T_SHT4x, TF_SHT4x;
uint16_t RH_SHT4x;
@@ -106,6 +105,7 @@ config_t sensor_config;
modbus_device_id_t device_id;
uint8_t sensor_config_pending_write = 0;
uint8_t baudrate_changed = 0;
uint8_t ltr329_config_changed = 0;
uint8_t modbus_address_changed = 0;
uint8_t co2_valid = 0;
@@ -126,6 +126,54 @@ void USART2_TX_Buffer(uint8_t* buffer_tx, uint16_t buffer_tx_len);
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int8_t sht4x_i2c_transmit(uint8_t address, uint8_t *buffer, int len)
{
return i2c_transmit(address, buffer, len);
}
int8_t sht4x_i2c_receive(uint8_t address, uint8_t *buffer, int len)
{
return i2c_receive(address, buffer, len);
}
uint8_t sensirion_crc8_calculate(const uint8_t *data, uint16_t count)
{
return crc8_calculate(data, count);
}
int8_t sht4x_disable_interrupts(void)
{
return uart_disable_interrupts();
}
int8_t sht4x_enable_interrupts(void)
{
return uart_enable_interrupts();
}
int8_t ltr329_i2c_transmit(uint8_t address, uint8_t *buffer, int len)
{
return i2c_transmit(address, buffer, len);
}
int8_t ltr329_i2c_receive(uint8_t address, uint8_t *buffer, int len)
{
return i2c_receive(address, buffer, len);
}
int8_t ltr329_disable_interrupts(void)
{
return uart_disable_interrupts();
}
int8_t ltr329_enable_interrupts(void)
{
return uart_enable_interrupts();
}
void delay_ms(int delay_ms)
{
LL_mDelay(delay_ms);
}
/* USER CODE END 0 */
/**
@@ -162,12 +210,6 @@ int main(void)
if (config_read_status != CONFIG_OK)
{
sensor_config.modbus_addr = MODBUS_DEFAULT_SLAVE_ADDRESS;
sensor_config.led_co2_alert_limit1 = CONFIG_DEFAULT_LED_ALERT1_LIMIT;
sensor_config.led_co2_alert_limit2 = CONFIG_DEFAULT_LED_ALERT2_LIMIT;
sensor_config.led_on = CONFIG_DEFAULT_LED_ON;
sensor_config.led_brightness = CONFIG_DEFAULT_LED_BRIGHTNESS;
sensor_config.led_smooth = CONFIG_DEFAULT_LED_SMOOTH;
sensor_config.scd4x_t_offset = CONFIG_DEFAULT_SCD4x_T_OFFSET;
sensor_config.baudrate_index = CONFIG_DEFAULT_BAUDRATE_INDEX;
}
/* USER CODE END SysInit */
@@ -231,7 +273,16 @@ int main(void)
ltr_ret = ltr329_write_settings(LTR329_GAIN_48X, LTR329_MODE_ACTIVE, LTR329_INTEGRATION_100MS, LTR329_MEAS_RATE_100MS);
/* TODO: Check register status */
} while (ltr_ret != 0);
/* LTR329 Innitialized */
ltr329_gain_t ltr329_gain;
ltr329_als_mode_t ltr329_mode;
ltr329_integration_time_t ltr329_int_time;
ltr329_measurement_rate_t ltr329_meas_rate;
ltr329_read_settings(&ltr329_gain, &ltr329_mode, &ltr329_int_time, &ltr329_meas_rate);
sensor_config.ltr329_gain = ltr329_gain;
sensor_config.ltr329_mode = ltr329_mode;
sensor_config.ltr329_integ_time = ltr329_int_time;
sensor_config.ltr329_meas_rate = ltr329_meas_rate;
static uint32_t new_baud;
/* Enter the main loop */
@@ -263,8 +314,10 @@ int main(void)
}
/* if config changed (MODBUS write), reflect changes to EEPROM */
if (sensor_config_pending_write) {
uart_disable_interrupts();
config_write(&sensor_config);
sensor_config_pending_write = 0;
uart_enable_interrupts();
}
if (modbus_address_changed)
{
@@ -284,6 +337,11 @@ int main(void)
new_baud = LL_USART_GetBaudRate(USART2, SYSTICK_FREQ_HZ, LL_USART_OVERSAMPLING_16);
}
if(ltr329_config_changed)
{
ltr329_write_settings(sensor_config.ltr329_gain, sensor_config.ltr329_mode, sensor_config.ltr329_integ_time, sensor_config.ltr329_meas_rate);
ltr329_config_changed = 0;
}
/* It is time for measurement */
if (tim21_elapsed_period == 1)
{
@@ -640,6 +698,12 @@ int8_t modbus_slave_callback(modbus_transaction_t *transaction)
case REGISTER_NUM_RH:
transaction->input_registers[i] = (uint16_t)RH_SHT4x;
break;
case REGISTER_NUM_LIGHT_INTENSITY_0:
transaction->input_registers[i] = (uint16_t)light_ch0;
break;
case REGISTER_NUM_LIGHT_INTENSITY_1:
transaction->input_registers[i] = (uint16_t)light_ch1;
break;
default:
return MODBUS_ERROR_FUNCTION_NOT_IMPLEMENTED;
}
@@ -656,6 +720,22 @@ int8_t modbus_slave_callback(modbus_transaction_t *transaction)
case REGISTER_NUM_BAUDRATE:
transaction->holding_registers[i] = (uint16_t)(sensor_config.baudrate_index);
break;
case REGISTER_NUM_LTR329_GAIN:
transaction->holding_registers[i] = (uint16_t)(sensor_config.ltr329_gain);
/* TODO : IMPLEMENT */
break;
case REGISTER_NUM_LTR329_INTEGRATION_TIME:
transaction->holding_registers[i] = (uint16_t)(sensor_config.ltr329_integ_time);
/* TODO : IMPLEMENT */
break;
case REGISTER_NUM_LTR329_MEAS_RATE:
transaction->holding_registers[i] = (uint16_t)(sensor_config.ltr329_meas_rate);
/* TODO : IMPLEMENT */
break;
case REGISTER_NUM_LTR329_MODE:
transaction->holding_registers[i] = (uint16_t)(sensor_config.ltr329_mode);
/* TODO : IMPLEMENT */
break;
default:
return MODBUS_ERROR_FUNCTION_NOT_IMPLEMENTED;
}
@@ -693,6 +773,56 @@ int8_t modbus_slave_callback(modbus_transaction_t *transaction)
return MODBUS_ERROR_OUT_OF_BOUNDS;
}
break;
case REGISTER_NUM_LTR329_GAIN:
if (transaction->holding_registers[i] != LTR329_GAIN_1X ||
transaction->holding_registers[i] != LTR329_GAIN_2X ||
transaction->holding_registers[i] != LTR329_GAIN_4X ||
transaction->holding_registers[i] != LTR329_GAIN_8X ||
transaction->holding_registers[i] != LTR329_GAIN_48X ||
transaction->holding_registers[i] != LTR329_GAIN_96X)
{
return MODBUS_ERROR_OUT_OF_BOUNDS;
}
sensor_config.ltr329_gain = (ltr329_gain_t) (transaction->holding_registers[i]);
ltr329_config_changed = 1;
break;
case REGISTER_NUM_LTR329_INTEGRATION_TIME:
if (transaction->holding_registers[i] != LTR329_INTEGRATION_50MS ||
transaction->holding_registers[i] != LTR329_INTEGRATION_100MS ||
transaction->holding_registers[i] != LTR329_INTEGRATION_150MS ||
transaction->holding_registers[i] != LTR329_INTEGRATION_200MS ||
transaction->holding_registers[i] != LTR329_INTEGRATION_250MS ||
transaction->holding_registers[i] != LTR329_INTEGRATION_300MS ||
transaction->holding_registers[i] != LTR329_INTEGRATION_350MS ||
transaction->holding_registers[i] != LTR329_INTEGRATION_400MS)
{
return MODBUS_ERROR_OUT_OF_BOUNDS;
}
sensor_config.ltr329_integ_time = (ltr329_integration_time_t) (transaction->holding_registers[i]);
ltr329_config_changed = 1;
break;
case REGISTER_NUM_LTR329_MEAS_RATE:
if (transaction->holding_registers[i] != LTR329_MEAS_RATE_50MS ||
transaction->holding_registers[i] != LTR329_MEAS_RATE_100MS ||
transaction->holding_registers[i] != LTR329_MEAS_RATE_200MS ||
transaction->holding_registers[i] != LTR329_MEAS_RATE_500MS ||
transaction->holding_registers[i] != LTR329_MEAS_RATE_1000MS ||
transaction->holding_registers[i] != LTR329_MEAS_RATE_2000MS)
{
return MODBUS_ERROR_OUT_OF_BOUNDS;
}
sensor_config.ltr329_meas_rate = (ltr329_measurement_rate_t) (transaction->holding_registers[i]);
ltr329_config_changed = 1;
break;
case REGISTER_NUM_LTR329_MODE:
if (transaction->holding_registers[i] != LTR329_MODE_STAND_BY ||
transaction->holding_registers[i] != LTR329_MODE_ACTIVE)
{
return MODBUS_ERROR_OUT_OF_BOUNDS;
}
sensor_config.ltr329_mode = (ltr329_als_mode_t) (transaction->holding_registers[i]);
ltr329_config_changed = 1;
break;
default:
return MODBUS_ERROR_FUNCTION_NOT_IMPLEMENTED;
}

View File

@@ -1,431 +0,0 @@
/*
* modbus.c
*
* Created on: Jul 18, 2021
* Author: user
*/
#include "modbus.h"
/*
* Global variables
*/
/* Modbus TX buffer; can be also used for RX in memory constrained systems (e.g. in main.c);
* NOTE if shared buffer is used for TX/RX, care must be taken to prevent writing into buffer
* during execution of modbus_process_message() */
uint8_t modbus_buffer[MODBUS_MAX_RTU_FRAME_SIZE];
/* MODBUS device address */
uint8_t modbus_slave_address = MODBUS_DEFAULT_SLAVE_ADDRESS;
/* Device ID struct */
modbus_device_id_t *modbus_device_id = NULL;
/*
* CRC16 functions
* see https://modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
* section 6.2.2
*/
/* CRC16 (without memory mapped values)
* taken from https://ctlsys.com/support/how_to_compute_the_modbus_rtu_message_crc/ */
uint16_t modbus_CRC16(const uint8_t *buf, int len)
{
uint16_t crc = 0xFFFF;
for (int pos = 0; pos < len; pos++) {
crc ^= (uint16_t)buf[pos]; // XOR byte into least sig. byte of crc
for (int i = 8; i != 0; i--) { // Loop over each bit
if ((crc & 0x0001) != 0) { // If the LSB is set
crc >>= 1; // Shift right and XOR 0xA001
crc ^= 0xA001;
} else { // Else LSB is not set
crc >>= 1; // Just shift right
}
}
}
// Note, this number has low and high bytes swapped, so use it accordingly (or swap bytes)
return crc;
}
/*
* Private functions
*/
static uint8_t modbus_fill_device_id_objects(uint8_t *buffer, modbus_transaction_t *transaction)
{
/* we assume buffer is 256 - MODBUS_READ_DEVICE_ID_RESPONSE_HEADER_LEN = 252 bytes long */
/* find out how many objects we copy to buffer */
int len;
uint8_t object_index = transaction->object_id;
uint8_t object_count;
uint8_t more_follows = MODBUS_NO_MORE_FOLLOWS;
uint8_t next_object_id;
uint8_t last_object;
const uint8_t max_len = 256 - MODBUS_READ_DEVICE_ID_RESPONSE_HEADER_LEN;
/* last object index */
if (transaction->read_device_id_code == MODBUS_CONFORMITY_BASIC) {
last_object = MODBUS_BASIC_OBJECT_COUNT;
} else if (transaction->read_device_id_code == MODBUS_CONFORMITY_REGULAR) {
last_object = MODBUS_REGULAR_OBJECT_COUNT;
/* extended not implemented */
// } else if (transaction->read_device_id_code == MODBUS_CONFORMITY_EXTENDED){
// last_object = MODBUS_EXTENDED_OBJECT_COUNT;
} else {
/* fallback: regular */
last_object = MODBUS_REGULAR_OBJECT_COUNT;
}
last_object--; // we need index
/* copy as many objects as possible */
do {
/* copy object */
int object_len = strlen(modbus_device_id->object_id[object_index]);
if (len + object_len + 2 > max_len) {
more_follows = MODBUS_MORE_FOLLOWS;
next_object_id = object_index;
break;
}
/* offset is for "more follows", "next object id", "object count" */
buffer[MODBUS_READ_DEVICE_ID_RESPONSE_OFFSET + len++] = object_index;
buffer[MODBUS_READ_DEVICE_ID_RESPONSE_OFFSET + len++] = object_len;
/* note that string copied to buffer is not null-terminated */
strncpy((char*)(buffer + len), (char*)modbus_device_id->object_id[object_index++], object_len);
len += object_len;
object_count++;
} while (object_index < last_object);
buffer[0] = more_follows;
buffer[1] = next_object_id;
buffer[2] = object_count;
return MODBUS_READ_DEVICE_ID_RESPONSE_OFFSET + len;
}
/* here we assume buffer has minimal size of MODBUS_MAX_RTU_FRAME_SIZE;
* this function is private, so hopefully it's going to be ok */
static int8_t modbus_transaction_to_buffer(uint8_t *buffer, uint8_t *msg_len, modbus_transaction_t *transaction)
{
uint16_t crc16;
uint8_t byte_count;
uint8_t buffer_pos = 0;
// TODO use relative indices (increments) instead of absolute
buffer[buffer_pos++] = modbus_slave_address;
buffer[buffer_pos++] = transaction->function_code;
*msg_len = 5;
if (transaction->function_code & MODBUS_ERROR_FLAG) {
/* sending error reply */
buffer[buffer_pos++] = transaction->exception;
} else {
switch (transaction->function_code) {
case MODBUS_READ_HOLDING_REGISTERS:
case MODBUS_READ_INPUT_REGISTERS:
byte_count = transaction->register_count * 2;
buffer[buffer_pos++] = byte_count;
*msg_len = byte_count + 5;
for (int i = 0; i < transaction->register_count; i++) {
// TODO endianness handling
/* buffer16b is alias for both holding and input register buffers */
buffer[buffer_pos++] = transaction->buffer16b[i] >> 8;
buffer[buffer_pos++] = transaction->buffer16b[i] & 0xff;
}
break;
case MODBUS_WRITE_SINGLE_REGISTER:
buffer[buffer_pos++] = (uint8_t) (transaction->register_address >> 8);
buffer[buffer_pos++] = (uint8_t) transaction->register_address;
buffer[buffer_pos++] = (uint8_t) (transaction->holding_registers[0] >> 8);
buffer[buffer_pos++] = (uint8_t) transaction->holding_registers[0];
*msg_len = 8; /* includes 2 bytes for CRC */
break;
case MODBUS_WRITE_MULTIPLE_REGISTERS:
buffer[buffer_pos++] = (uint8_t) (transaction->register_address >> 8);
buffer[buffer_pos++] = (uint8_t) transaction->register_address;
buffer[buffer_pos++] = (uint8_t) (transaction->register_count >> 8);
buffer[buffer_pos++] = (uint8_t) transaction->register_count;
*msg_len = 8; /* includes 2 bytes for CRC */
break;
case MODBUS_READ_DEVICE_IDENTIFICATION:
/* MEI type */
buffer[buffer_pos++] = MODBUS_MEI;
/* read device id */
buffer[buffer_pos++] = transaction->read_device_id_code;
/* conformity level */
buffer[buffer_pos++] = modbus_device_id->conformity_level;
/* fill buffer with as many objects as possible */
*msg_len = modbus_fill_device_id_objects(buffer+buffer_pos, transaction);
*msg_len += 7; /* includes 2 bytes for CRC */
break;
}
}
crc16 = modbus_CRC16(buffer, buffer_pos); /* last two bytes is the checksum itself */
buffer[buffer_pos++] = crc16 & 0xff;
buffer[buffer_pos++] = crc16 >> 8;
return MODBUS_OK;
}
static int8_t modbus_process_device_id_request(const uint8_t *buffer, int len, modbus_transaction_t *transaction)
{
uint8_t MEI_type;
uint8_t read_device_id_code;
uint8_t object_id;
uint8_t buffer_pos = 0;
if (transaction->broadcast == 1) {
/* Read device ID broadcast - invalid; ignore (master will get timeout) */
return MODBUS_ERROR;
}
if (modbus_device_id == NULL) {
/* modbus_device_id not initialized; user should use modbus_slave_init_device_id() first */
transaction->exception = MODBUS_EXCEPTION_ILLEGAL_DEVICE_ID_CODE;
return MODBUS_OK;
}
if (len < MODBUS_READ_DEVICE_ID_REQUEST_LEN) {
/* frame too short, ignore */
return MODBUS_ERROR;
}
/* next byte should be MEI = 0x0E */
MEI_type = buffer[buffer_pos++];
if (MEI_type != MODBUS_MEI) {
/* invalid MEI, ignore. I have no idea what MEI does, but it should always be 0x0E */
return MODBUS_ERROR;
}
/* next byte is read device id code */
read_device_id_code = buffer[buffer_pos++];
/* read device id code can only have values 1,2,3,4 */
if (read_device_id_code < 1 || read_device_id_code > 4) {
transaction->exception = MODBUS_EXCEPTION_ILLEGAL_DEVICE_ID_CODE;
return MODBUS_OK;
}
transaction->read_device_id_code = read_device_id_code;
/* next byte is object id */
object_id = buffer[buffer_pos++];
transaction->object_id = object_id;
if (object_id > MODBUS_DEVICE_ID_OBJECT_NUM) {
/* illegal object ID */
transaction->exception = MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS;
return MODBUS_OK;
}
/* Message processed */
return MODBUS_OK;
}
/* returns ERROR only when no response to master is needed */
static int8_t modbus_process_read_write_request(const uint8_t *buffer, int len, modbus_transaction_t *transaction)
{
uint8_t byte_count;
int8_t callback_result;
uint8_t buffer_pos = 0;
/* set starting register number */
switch (transaction->function_code) {
/* coils */
case MODBUS_READ_DO:
case MODBUS_WRITE_SINGLE_DO:
case MODBUS_WRITE_MULTIPLE_DO:
transaction->register_number = MODBUS_DO_START_NUMBER;
break;
/* discrete inputs */
case MODBUS_READ_DI:
transaction->register_number = MODBUS_DI_START_NUMBER;
break;
/* input registers */
case MODBUS_READ_AI:
transaction->register_number = MODBUS_AI_START_NUMBER;
break;
/* holding registers */
case MODBUS_READ_AO:
case MODBUS_WRITE_SINGLE_AO:
case MODBUS_WRITE_MULTIPLE_AO:
case MODBUS_READ_WRITE_MULTIPLE_REGISTERS:
transaction->register_number = MODBUS_AO_START_NUMBER;
break;
}
#define MODBUS_FLAG_WRITE 0x01
#define MODBUS_FLAG_SINGLE 0x02
uint8_t flags = 0x00;
/* process message */
switch (transaction->function_code) {
case MODBUS_WRITE_SINGLE_COIL:
case MODBUS_WRITE_SINGLE_REGISTER: /* holding register */
flags |= MODBUS_FLAG_SINGLE;
case MODBUS_WRITE_MULTIPLE_COILS:
case MODBUS_WRITE_MULTIPLE_REGISTERS:
flags |= MODBUS_FLAG_WRITE;
case MODBUS_READ_DISCRETE_INPUTS:
case MODBUS_READ_COILS:
case MODBUS_READ_INPUT_REGISTERS:
case MODBUS_READ_HOLDING_REGISTERS:
if (len < MODBUS_MINIMAL_READWRITE_LEN) {
/* buffer too short to contain everything we need */
return MODBUS_ERROR;
}
transaction->register_address = (buffer[buffer_pos] << 8) | buffer[buffer_pos + 1];
buffer += 2;
// TODO check length!
if (flags & MODBUS_FLAG_WRITE) {
if (flags & MODBUS_FLAG_SINGLE) {
transaction->holding_registers[0] = (buffer[buffer_pos] << 8) | buffer[buffer_pos + 1];
buffer_pos += 2;
} else {
/* Write multiple registers */
transaction->register_count = (buffer[buffer_pos] << 8) | buffer[buffer_pos + 1];
buffer_pos += 2;
if (len < MODBUS_MINIMAL_WRITE_MULTIPLE_LEN) {
return MODBUS_ERROR;
}
byte_count = buffer[buffer_pos++];
if (transaction->register_count > 123 || 2*transaction->register_count != byte_count) {
/* Max number of register is defined by Modbus_Application_Protocol_V1_1b, section 6.12 */
transaction->exception = MODBUS_EXCEPTION_ILLEGAL_REGISTER_QUANTITY;
} else {
if (len < MODBUS_MINIMAL_WRITE_MULTIPLE_LEN + byte_count) {
return MODBUS_ERROR;
}
for (uint8_t i = 0; i < transaction->register_count; i++) {
transaction->holding_registers[i] = (buffer[buffer_pos] << 8) | buffer[buffer_pos + 1];
buffer_pos += 2;
}
}
}
} else {
transaction->register_count = (buffer[buffer_pos] << 8) | buffer[buffer_pos + 1];
buffer_pos += 2;
if (
transaction->register_count < 1 ||
transaction->register_count > MODBUS_MAX_REGISTERS
) {
transaction->exception = MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE;
}
}
// add offset to register number
transaction->register_number += transaction->register_address;
break;
default:
/* function code not known / not implemented, reply with
* ExceptionCode 1 */
transaction->exception = MODBUS_EXCEPTION_ILLEGAL_FUNCTION;
break;
}
/* data in modbus_buffer have been processed and buffer can be re-used for TX */
/* handle reply */
if (transaction->exception != 0) {
/* indicate error */
transaction->function_code |= MODBUS_ERROR_FLAG;
} else {
callback_result = modbus_slave_callback(transaction);
/* error handling */
if (callback_result != MODBUS_OK) {
transaction->function_code |= MODBUS_ERROR_FLAG;
if (callback_result == MODBUS_ERROR_FUNCTION_NOT_IMPLEMENTED) {
transaction->exception = MODBUS_EXCEPTION_ILLEGAL_FUNCTION;
} else if (callback_result == MODBUS_ERROR_REGISTER_NOT_IMPLEMENTED) {
transaction->exception = MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS;
}
}
}
return MODBUS_OK;
}
/*
* Public function definitions
*/
int8_t modbus_slave_set_address(uint8_t address)
{
if (address == 0) {
/* address 0 is broadcast address */
return MODBUS_ERROR;
}
modbus_slave_address = address;
return MODBUS_OK;
}
int8_t modbus_slave_process_msg(const uint8_t *buffer, int len)
{
/*
* TODO list:
*
* 1) check that errors and exceptions are handled according to Modbus_Application_Protocol_V1_1b.pdf
* 2) buffer overflow prevention: for each function code, check that buffer is long enough
*/
/* transaction holds message context and content:
* it wraps all necessary buffers and variables */
modbus_transaction_t transaction;
uint8_t buffer_pos = 0;
if (len < MODBUS_MINIMAL_FRAME_LEN) {
/* frame too short; return error (no reply needed) */
return MODBUS_ERROR_FRAME_INVALID;
}
/* check CRC first */
uint16_t crc_received = (buffer[len - 1] << 8) | buffer[len - 2];
uint16_t crc_calculated = modbus_CRC16(buffer, len - 2);
if (crc_received != crc_calculated) {
/* CRC mismatch, return error (no reply needed) */
return MODBUS_ERROR_CRC;
}
/* check if address matches ours */
uint8_t address = buffer[buffer_pos++];
transaction.broadcast = (address == MODBUS_BROADCAST_ADDR);
if (address != modbus_slave_address && transaction.broadcast != 1) {
/* Message is not for us (no reply needed) */
return MODBUS_OK;
}
/* get function code */
transaction.function_code = buffer[buffer_pos++];
transaction.exception = 0;
uint8_t request_processing_result;
if (transaction.function_code == MODBUS_READ_DEVICE_IDENTIFICATION) {
/* Read device ID request is quite complicated, therefore it has its own processing function */
request_processing_result = modbus_process_device_id_request(buffer + buffer_pos, len - buffer_pos, &transaction);
} else {
/* process other requests: input register read, holding register read/write */
request_processing_result = modbus_process_read_write_request(buffer + buffer_pos, len - buffer_pos, &transaction);
}
uint8_t msg_len;
/* reply only if request was processed successfully and message was not broadcast */
if (request_processing_result == MODBUS_OK && transaction.broadcast == 0) {
modbus_transaction_to_buffer(modbus_buffer, &msg_len, &transaction);
/* send reply */
modbus_transmit_function(modbus_buffer, msg_len);
}
return MODBUS_OK;
}
int8_t modbus_slave_init_device_id(modbus_device_id_t *device_id)
{
if (device_id == NULL) {
return MODBUS_ERROR;
}
/* at least basic category objects have to be implemented */
if ( device_id->object_name.VendorName == NULL ||
device_id->object_name.ProductCode == NULL ||
device_id->object_name.MajorMinorRevision == NULL
) {
return MODBUS_ERROR;
}
/* set conformity level: currently only "basic" and "regular" is implemented */
if ( device_id->object_id[3] != NULL &&
device_id->object_id[4] != NULL &&
device_id->object_id[5] != NULL
) {
/* strings are present in regular category (optional) */
device_id->conformity_level = MODBUS_CONFORMITY_REGULAR;
} else {
device_id->conformity_level = MODBUS_CONFORMITY_BASIC;
}
/* we support both stream and individual access to objects */
device_id->conformity_level |= MODBUS_DEVICE_ID_INDIVIDUAL_ACCESS_FLAG;
modbus_device_id = device_id;
return MODBUS_OK;
}

View File

@@ -1,67 +0,0 @@
/*
* sht4x.c
*
* Created on: Jun 8, 2021
* Author: user
*/
#include "sht4x.h"
#include "main.h" /* for uart_disable_interrupts() */
int8_t sht4x_send_cmd(sht4x_cmd_t cmd)
{
return SHT4X_OK;
}
int8_t sht4x_read_data(uint8_t *buffer, int len)
{
return SHT4X_OK;
}
int8_t sht4x_measure(int16_t *temperature, uint16_t *relative_humidity)
{
uint8_t buffer[32];
int result;
/* disable interrupts to prevent modbus/i2c conflict */
// start measurement
buffer[0] = SHT4X_START_MEAS_HIGH_PRECISION;
uart_disable_interrupts();
result = i2c_transmit(SHT4X_I2C_ADDRESS<<1, buffer, 1);
uart_enable_interrupts();
if (result != I2C_OK) {
return SHT4X_ERROR;
}
LL_mDelay(10); /* 10 ms should be enough */
/* read out */
uart_disable_interrupts();
result = i2c_receive(SHT4X_I2C_ADDRESS<<1, buffer, 6);
uart_enable_interrupts();
if (result != I2C_OK) {
return SHT4X_ERROR;
}
/* Convert to T and RH; taken directly from pseudocode in SHT4x datasheet, page 3 */
uint32_t t_ticks = (buffer[0] << 8) + buffer[1];
uint8_t t_crc = buffer[2];
uint32_t rh_ticks = (buffer[3] << 8) + buffer[4];
uint8_t rh_crc = buffer[5];
/* check CRC-8 checksum */
uint8_t crc_correct = crc8_calculate(buffer, 2) == t_crc;
crc_correct &= crc8_calculate(buffer + 3, 2) == rh_crc;
if (!crc_correct) {
return SHT4X_CRC8_ERROR;
}
/* copy data to output variables */
int t_degC = -450 + 10 * 175 * t_ticks / 65535; /* temperature * 10 */
int rh_pRH = -6 + 125 * rh_ticks / 65535;
if (rh_pRH > 100) {
rh_pRH = 100;
}
if (rh_pRH < 0) {
rh_pRH = 0;
}
*temperature = t_degC;
*relative_humidity = rh_pRH;
return SHT4X_OK;
}