Format document

This commit is contained in:
Jan Mrna
2025-11-06 10:46:54 +01:00
parent 2fb7a7d224
commit e352780a3d
2 changed files with 220 additions and 156 deletions

136
db.py
View File

@@ -6,15 +6,16 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np import numpy as np
import pymupdf import pymupdf
import ollama # TODO split to another file import ollama # TODO split to another file
# #
# Types # Types
# #
type Vector = np.NDArray # np.NDArray[np.float32] ? type Vector = np.NDArray # np.NDArray[np.float32] ?
type VectorBytes = bytes type VectorBytes = bytes
@dataclass(slots=True) @dataclass(slots=True)
class Record: class Record:
document_index: int document_index: int
@@ -22,12 +23,14 @@ class Record:
text: str text: str
chunk: int = 0 # Chunk number within the page (0-indexed) chunk: int = 0 # Chunk number within the page (0-indexed)
@dataclass(slots=True) @dataclass(slots=True)
class QueryResult: class QueryResult:
record: Record record: Record
distance: float distance: float
document_name: str document_name: str
@dataclass(slots=True) @dataclass(slots=True)
class Database: class Database:
""" """
@@ -36,41 +39,45 @@ class Database:
TODO For faster nearest neighbour lookup we should use something else, TODO For faster nearest neighbour lookup we should use something else,
e.g. kd-trees e.g. kd-trees
""" """
vectors: list[Vector] vectors: list[Vector]
records: dict[VectorBytes, Record] records: dict[VectorBytes, Record]
documents: list[Path] documents: list[Path]
# #
# Internal functions # Internal functions
# #
def _find_nearest(vectors_db: list[Vector], query_vector: Vector, count: int = 10) -> list[tuple[float, int]]: def _find_nearest(
vectors_db: list[Vector], query_vector: Vector, count: int = 10
) -> list[tuple[float, int]]:
""" """
Find the N nearest vectors to the query embedding. Find the N nearest vectors to the query embedding.
Args: Args:
vectors_db: List of vectors in the database vectors_db: List of vectors in the database
query_vector: Query embedding vector query_vector: Query embedding vector
n: Number of nearest neighbors to return n: Number of nearest neighbors to return
Returns: Returns:
List of (distance, index) tuples, sorted by distance (closest first) List of (distance, index) tuples, sorted by distance (closest first)
""" """
distances = [np.linalg.norm(x - query_vector) for x in vectors_db] distances = [np.linalg.norm(x - query_vector) for x in vectors_db]
# Get indices sorted by distance # Get indices sorted by distance
sorted_indices = np.argsort(distances) sorted_indices = np.argsort(distances)
# Return top N results as (distance, index) tuples # Return top N results as (distance, index) tuples
results = [] results = []
for i in range(min(count, len(sorted_indices))): for i in range(min(count, len(sorted_indices))):
idx = sorted_indices[i] idx = sorted_indices[i]
results.append((float(distances[idx]), int(idx))) results.append((float(distances[idx]), int(idx)))
return results return results
def _embed(text: str) -> Vector: def _embed(text: str) -> Vector:
""" """
Generate embedding vector for given text. Generate embedding vector for given text.
@@ -82,13 +89,15 @@ def _embed(text: str) -> Vector:
def _vectorize_record(record: Record) -> tuple[Record, Vector]: def _vectorize_record(record: Record) -> tuple[Record, Vector]:
return record, _embed(record.text) return record, _embed(record.text)
# #
# High-level (exported) functions # High-level (exported) functions
# #
def create_dummy() -> Database: def create_dummy() -> Database:
db_length: Final[int] = 10 db_length: Final[int] = 10
vectors = [np.array([i, 2*i, 3*i, 4*i]) for i in range(db_length)] vectors = [np.array([i, 2 * i, 3 * i, 4 * i]) for i in range(db_length)]
records = { records = {
vector.tobytes(): Record(0, 1, "Lorem my ipsum", 1) for vector in vectors vector.tobytes(): Record(0, 1, "Lorem my ipsum", 1) for vector in vectors
} }
@@ -98,7 +107,7 @@ def create_dummy() -> Database:
def create_empty() -> Database: def create_empty() -> Database:
""" """
Creates a new empty database with no vectors or records. Creates a new empty database with no vectors or records.
Returns: Returns:
Empty Database object Empty Database object
""" """
@@ -108,105 +117,109 @@ def create_empty() -> Database:
def load(database_file: Path) -> Database: def load(database_file: Path) -> Database:
""" """
Loads a database from the given file. Loads a database from the given file.
Args: Args:
database_file: Path to the database file database_file: Path to the database file
Returns: Returns:
Database object loaded from file Database object loaded from file
""" """
if not database_file.exists(): if not database_file.exists():
raise FileNotFoundError(f"Database file not found: {database_file}") raise FileNotFoundError(f"Database file not found: {database_file}")
with open(database_file, 'rb') as f: with open(database_file, "rb") as f:
serializable_db = pickle.load(f) serializable_db = pickle.load(f)
# Reconstruct vectors from bytes # Reconstruct vectors from bytes
vectors = [] vectors = []
vector_dtype = np.dtype(serializable_db.get('vector_dtype', 'float64')) vector_dtype = np.dtype(serializable_db.get("vector_dtype", "float64"))
vector_shape = serializable_db.get('vector_shape', ()) vector_shape = serializable_db.get("vector_shape", ())
for vector_bytes in serializable_db['vectors']: for vector_bytes in serializable_db["vectors"]:
vector = np.frombuffer(vector_bytes, dtype=vector_dtype).reshape(vector_shape) vector = np.frombuffer(vector_bytes, dtype=vector_dtype).reshape(vector_shape)
vectors.append(vector) vectors.append(vector)
# Records already use bytes as keys, so we can use them directly
records = serializable_db['records']
documents = serializable_db['documents'] # Records already use bytes as keys, so we can use them directly
records = serializable_db["records"]
documents = serializable_db["documents"]
return Database(vectors, records, documents) return Database(vectors, records, documents)
def save(db: Database, database_file: Path) -> None: def save(db: Database, database_file: Path) -> None:
""" """
Saves the database to a file using pickle serialization. Saves the database to a file using pickle serialization.
Args: Args:
db: The Database object to save db: The Database object to save
database_file: Path where to save the database file database_file: Path where to save the database file
""" """
# Ensure the directory exists # Ensure the directory exists
database_file.parent.mkdir(parents=True, exist_ok=True) database_file.parent.mkdir(parents=True, exist_ok=True)
# Create a serializable version of the database # Create a serializable version of the database
# Records already use bytes as keys, so we can use them directly # Records already use bytes as keys, so we can use them directly
serializable_db = { serializable_db = {
'vectors': [vector.tobytes() for vector in db.vectors], "vectors": [vector.tobytes() for vector in db.vectors],
'vector_dtype': str(db.vectors[0].dtype) if db.vectors else 'float64', "vector_dtype": str(db.vectors[0].dtype) if db.vectors else "float64",
'vector_shape': db.vectors[0].shape if db.vectors else (), "vector_shape": db.vectors[0].shape if db.vectors else (),
'records': db.records, # Already uses bytes as keys "records": db.records, # Already uses bytes as keys
'documents': db.documents, "documents": db.documents,
} }
# Save to file # Save to file
with open(database_file, 'wb') as f: with open(database_file, "wb") as f:
pickle.dump(serializable_db, f) pickle.dump(serializable_db, f)
def query(db: Database | Path, text: str, record_count: int = 10) -> list[QueryResult]: def query(db: Database | Path, text: str, record_count: int = 10) -> list[QueryResult]:
""" """
Query the database and return the N nearest records. Query the database and return the N nearest records.
Args: Args:
db: Database object or path to database file db: Database object or path to database file
text: Query text to search for text: Query text to search for
record_count: Number of nearest neighbors to return (default: 10) record_count: Number of nearest neighbors to return (default: 10)
Returns: Returns:
List of (distance, Record) tuples, sorted by distance (closest first) List of (distance, Record) tuples, sorted by distance (closest first)
""" """
if isinstance(db, Path): if isinstance(db, Path):
db = load(db) db = load(db)
# Generate embedding for query text # Generate embedding for query text
query_vector = _embed(text) query_vector = _embed(text)
# Find nearest vectors # Find nearest vectors
# NOTE We're using euclidean distance as a metric of similarity, # NOTE We're using euclidean distance as a metric of similarity,
# there are some alternatives (cos or dot product) which may be used. # there are some alternatives (cos or dot product) which may be used.
# See https://en.wikipedia.org/wiki/Embedding_(machine_learning) # See https://en.wikipedia.org/wiki/Embedding_(machine_learning)
nearest_results = _find_nearest(db.vectors, query_vector, record_count) nearest_results = _find_nearest(db.vectors, query_vector, record_count)
# Convert results to (distance, Record) tuples # Convert results to (distance, Record) tuples
results: list[QueryResult] = [] results: list[QueryResult] = []
for distance, vector_idx in nearest_results: for distance, vector_idx in nearest_results:
# Get the vector at this index # Get the vector at this index
vector = db.vectors[vector_idx] vector = db.vectors[vector_idx]
vector_bytes = vector.tobytes() vector_bytes = vector.tobytes()
# Look up the corresponding record # Look up the corresponding record
if vector_bytes in db.records: if vector_bytes in db.records:
record = db.records[vector_bytes] record = db.records[vector_bytes]
results.append(QueryResult(record, distance, db.documents[record.document_index].name)) results.append(
QueryResult(record, distance, db.documents[record.document_index].name)
)
return results return results
def add_document(db: Database | Path, file: Path, max_workers: int = 4) -> None: def add_document(db: Database | Path, file: Path, max_workers: int = 4) -> None:
""" """
Adds a new document to the database. If path is given, do load, add, save. Adds a new document to the database. If path is given, do load, add, save.
Loads PDF with PyMuPDF, splits by pages, and creates records and vectors. Loads PDF with PyMuPDF, splits by pages, and creates records and vectors.
Uses multithreading for embedding generation. Uses multithreading for embedding generation.
Args: Args:
db: Database object or path to database file db: Database object or path to database file
file: Path to PDF file to add file: Path to PDF file to add
@@ -215,25 +228,25 @@ def add_document(db: Database | Path, file: Path, max_workers: int = 4) -> None:
""" """
save_to_file = False save_to_file = False
database_file_path = None database_file_path = None
if isinstance(db, Path): if isinstance(db, Path):
database_file_path = db database_file_path = db
db = load(db) db = load(db)
save_to_file = True save_to_file = True
if not file.exists(): if not file.exists():
raise FileNotFoundError(f"File not found: {file}") raise FileNotFoundError(f"File not found: {file}")
if file.suffix.lower() != '.pdf': if file.suffix.lower() != ".pdf":
raise ValueError(f"File must be a PDF: {file}") raise ValueError(f"File must be a PDF: {file}")
print(f"Processing PDF: {file}") print(f"Processing PDF: {file}")
document_index = len(db.documents) document_index = len(db.documents)
try: try:
doc = pymupdf.open(file) doc = pymupdf.open(file)
print(f"PDF opened successfully: {len(doc)} pages") print(f"PDF opened successfully: {len(doc)} pages")
records: list[Record] = [] records: list[Record] = []
chunk_size = 1024 chunk_size = 1024
@@ -243,13 +256,15 @@ def add_document(db: Database | Path, file: Path, max_workers: int = 4) -> None:
if not text: if not text:
print(f" Page {page_num + 1}: Skipped (empty)") print(f" Page {page_num + 1}: Skipped (empty)")
continue continue
# Simple chunking - split text into chunks of specified size # Simple chunking - split text into chunks of specified size
for chunk_idx, i in enumerate(range(0, len(text), chunk_size)): for chunk_idx, i in enumerate(range(0, len(text), chunk_size)):
chunk = text[i:i + chunk_size] chunk = text[i : i + chunk_size]
if chunk_stripped := chunk.strip(): # Only add non-empty chunks if chunk_stripped := chunk.strip(): # Only add non-empty chunks
# page_num + 1 for use friendliness # page_num + 1 for use friendliness
records.append(Record(document_index, page_num + 1, chunk_stripped, chunk_idx)) records.append(
Record(document_index, page_num + 1, chunk_stripped, chunk_idx)
)
doc.close() doc.close()
except Exception as e: except Exception as e:
raise RuntimeError(f"Error processing PDF {file}: {e}") raise RuntimeError(f"Error processing PDF {file}: {e}")
@@ -261,34 +276,35 @@ def add_document(db: Database | Path, file: Path, max_workers: int = 4) -> None:
# TODO measure with GIL disabled to check if multithreading actually helps # TODO measure with GIL disabled to check if multithreading actually helps
with ThreadPoolExecutor(max_workers=max_workers) as pool: with ThreadPoolExecutor(max_workers=max_workers) as pool:
futures = [ pool.submit(_vectorize_record, r) for r in records ] futures = [pool.submit(_vectorize_record, r) for r in records]
for f in as_completed(futures): for f in as_completed(futures):
record, vector = f.result() record, vector = f.result()
db.records[vector.tobytes()] = record db.records[vector.tobytes()] = record
db.vectors.append(vector) db.vectors.append(vector)
print(f"Successfully processed {file}: {len(records)} chunks") print(f"Successfully processed {file}: {len(records)} chunks")
# Save database if we loaded it from file # Save database if we loaded it from file
if save_to_file and database_file_path: if save_to_file and database_file_path:
save(db, database_file_path) save(db, database_file_path)
print(f"Database saved to {database_file_path}") print(f"Database saved to {database_file_path}")
def get_document_path(db: Database | Path, document_index: int) -> Path: def get_document_path(db: Database | Path, document_index: int) -> Path:
""" """
Get the file path of the document at the given index in the database. Get the file path of the document at the given index in the database.
Args: Args:
db: Database object or path to database file db: Database object or path to database file
document_index: Index of the document to retrieve document_index: Index of the document to retrieve
Returns: Returns:
Path to the document file Path to the document file
""" """
if isinstance(db, Path): if isinstance(db, Path):
db = load(db) db = load(db)
if document_index < 0 or document_index >= len(db.documents): if document_index < 0 or document_index >= len(db.documents):
raise IndexError(f"Document index out of range: {document_index}") raise IndexError(f"Document index out of range: {document_index}")
return db.documents[document_index] return db.documents[document_index]

240
main.py
View File

@@ -9,56 +9,69 @@ import db
DEFAULT_DB_PATH: Final[Path] = Path("db.pkl") DEFAULT_DB_PATH: Final[Path] = Path("db.pkl")
def test_database(): def test_database():
"""Test database save/load functionality by creating, saving, loading and comparing.""" """Test database save/load functionality by creating, saving, loading and comparing."""
print("=== Database Test ===") print("=== Database Test ===")
# Create dummy database # Create dummy database
print("1. Creating dummy database...") print("1. Creating dummy database...")
original_db = db.create_dummy() original_db = db.create_dummy()
print(f" Original DB: {len(original_db.vectors)} vectors, {len(original_db.records)} records") print(
f" Original DB: {len(original_db.vectors)} vectors, {len(original_db.records)} records"
)
# Print some details about the original database # Print some details about the original database
print(" First vector shape:", original_db.vectors[0].shape if original_db.vectors else "No vectors") print(
print(" Sample vector:", original_db.vectors[0][:4] if original_db.vectors else "No vectors") " First vector shape:",
original_db.vectors[0].shape if original_db.vectors else "No vectors",
)
print(
" Sample vector:",
original_db.vectors[0][:4] if original_db.vectors else "No vectors",
)
print(" Sample record keys (first 3):", list(original_db.records.keys())[:3]) print(" Sample record keys (first 3):", list(original_db.records.keys())[:3])
# Create temporary file for testing # Create temporary file for testing
with tempfile.NamedTemporaryFile(suffix='.pkl', delete=False) as tmp_file: with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as tmp_file:
test_file = Path(tmp_file.name) test_file = Path(tmp_file.name)
try: try:
# Save database # Save database
print(f"\n2. Saving database to {test_file}...") print(f"\n2. Saving database to {test_file}...")
db.save(original_db, test_file) db.save(original_db, test_file)
print(f" File size: {test_file.stat().st_size} bytes") print(f" File size: {test_file.stat().st_size} bytes")
# Load database # Load database
print(f"\n3. Loading database from {test_file}...") print(f"\n3. Loading database from {test_file}...")
loaded_db = db.load(test_file) loaded_db = db.load(test_file)
print(f" Loaded DB: {len(loaded_db.vectors)} vectors, {len(loaded_db.records)} records") print(
f" Loaded DB: {len(loaded_db.vectors)} vectors, {len(loaded_db.records)} records"
)
# Compare databases # Compare databases
print("\n4. Comparing original vs loaded...") print("\n4. Comparing original vs loaded...")
# Check vector count # Check vector count
vectors_match = len(original_db.vectors) == len(loaded_db.vectors) vectors_match = len(original_db.vectors) == len(loaded_db.vectors)
print(f" Vector count match: {vectors_match}") print(f" Vector count match: {vectors_match}")
# Check record count # Check record count
records_match = len(original_db.records) == len(loaded_db.records) records_match = len(original_db.records) == len(loaded_db.records)
print(f" Record count match: {records_match}") print(f" Record count match: {records_match}")
# Check vector equality # Check vector equality
vectors_equal = True vectors_equal = True
if vectors_match and original_db.vectors: if vectors_match and original_db.vectors:
for i, (orig, loaded) in enumerate(zip(original_db.vectors, loaded_db.vectors)): for i, (orig, loaded) in enumerate(
zip(original_db.vectors, loaded_db.vectors)
):
if not np.array_equal(orig, loaded): if not np.array_equal(orig, loaded):
vectors_equal = False vectors_equal = False
print(f" Vector {i} mismatch!") print(f" Vector {i} mismatch!")
break break
print(f" All vectors equal: {vectors_equal}") print(f" All vectors equal: {vectors_equal}")
# Check record equality # Check record equality
records_equal = True records_equal = True
if records_match: if records_match:
@@ -72,21 +85,31 @@ def test_database():
print(" Record content mismatch!") print(" Record content mismatch!")
break break
print(f" All records equal: {records_equal}") print(f" All records equal: {records_equal}")
# Test embedding functionality # Test embedding functionality
print("\n5. Testing embedding functionality (Ollama API server)...") print("\n5. Testing embedding functionality (Ollama API server)...")
try: try:
test_embedding = db._embed("This is a test text for embedding.") test_embedding = db._embed("This is a test text for embedding.")
print(f" Embedding test PASSED: Generated vector of shape {test_embedding.shape}") print(
f" Embedding test PASSED: Generated vector of shape {test_embedding.shape}"
)
ollama_running = True ollama_running = True
except Exception as e: except Exception as e:
print(f" Embedding test FAILED: {e}\n Did you start ollama docker image?") print(
f" Embedding test FAILED: {e}\n Did you start ollama docker image?"
)
ollama_running = False ollama_running = False
# Summary # Summary
all_good = vectors_match and records_match and vectors_equal and records_equal and ollama_running all_good = (
vectors_match
and records_match
and vectors_equal
and records_equal
and ollama_running
)
print(f"\n✅ Test {'PASSED' if all_good else 'FAILED'}") print(f"\n✅ Test {'PASSED' if all_good else 'FAILED'}")
finally: finally:
# Clean up temporary file # Clean up temporary file
if test_file.exists(): if test_file.exists():
@@ -97,20 +120,20 @@ def test_database():
def create_database(db_path: str): def create_database(db_path: str):
"""Create a new empty database.""" """Create a new empty database."""
db_file = Path(db_path) db_file = Path(db_path)
# Check if file already exists # Check if file already exists
if db_file.exists(): if db_file.exists():
response = input(f"Database {db_file} already exists. Overwrite? (y/N): ") response = input(f"Database {db_file} already exists. Overwrite? (y/N): ")
if response.lower() != 'y': if response.lower() != "y":
print("Operation cancelled.") print("Operation cancelled.")
return return
# Create empty database # Create empty database
empty_db = db.create_empty() empty_db = db.create_empty()
# Save to file # Save to file
db.save(empty_db, db_file) db.save(empty_db, db_file)
print(f"✅ Created empty database: {db_file}") print(f"✅ Created empty database: {db_file}")
print(f" Vectors: {len(empty_db.vectors)}") print(f" Vectors: {len(empty_db.vectors)}")
print(f" Records: {len(empty_db.records)}") print(f" Records: {len(empty_db.records)}")
@@ -119,11 +142,11 @@ def create_database(db_path: str):
def add_file(db_path: str, file_paths: list[str]): def add_file(db_path: str, file_paths: list[str]):
"""Add one or more files to the semantic search database.""" """Add one or more files to the semantic search database."""
print(f"Adding {len(file_paths)} file(s) to database: {db_path}") print(f"Adding {len(file_paths)} file(s) to database: {db_path}")
db_file = Path(db_path) db_file = Path(db_path)
successful_files = [] successful_files = []
failed_files = [] failed_files = []
for i, file_path in enumerate(file_paths, 1): for i, file_path in enumerate(file_paths, 1):
print(f"\n[{i}/{len(file_paths)}] Processing: {file_path}") print(f"\n[{i}/{len(file_paths)}] Processing: {file_path}")
try: try:
@@ -133,7 +156,7 @@ def add_file(db_path: str, file_paths: list[str]):
except Exception as e: except Exception as e:
failed_files.append((file_path, str(e))) failed_files.append((file_path, str(e)))
print(f"❌ Failed to add {file_path}: {e}") print(f"❌ Failed to add {file_path}: {e}")
# Summary # Summary
print(f"\n{'='*60}") print(f"\n{'='*60}")
print("SUMMARY:") print("SUMMARY:")
@@ -141,44 +164,43 @@ def add_file(db_path: str, file_paths: list[str]):
if successful_files: if successful_files:
for file_path in successful_files: for file_path in successful_files:
print(f" - {Path(file_path).name}") print(f" - {Path(file_path).name}")
if failed_files: if failed_files:
print(f"❌ Failed to add: {len(failed_files)} files") print(f"❌ Failed to add: {len(failed_files)} files")
for file_path, error in failed_files: for file_path, error in failed_files:
print(f" - {Path(file_path).name}: {error}") print(f" - {Path(file_path).name}: {error}")
print(f"{'='*60}") print(f"{'='*60}")
def query(db_path: str, query_text: str): def query(db_path: str, query_text: str):
"""Query the semantic search database.""" """Query the semantic search database."""
print(f"Querying: '{query_text}' in database: {db_path}") print(f"Querying: '{query_text}' in database: {db_path}")
try: try:
results = db.query(Path(db_path), query_text) results = db.query(Path(db_path), query_text)
if not results: if not results:
print("No results found.") print("No results found.")
return return
print(f"\nFound {len(results)} results:") print(f"\nFound {len(results)} results:")
print("=" * 60) print("=" * 60)
for i, res in enumerate(results, 1): for i, res in enumerate(results, 1):
print(f"\n{i}. Distance: {res.distance:.4f}") print(f"\n{i}. Distance: {res.distance:.4f}")
print(f" Document: {res.document_name}") print(f" Document: {res.document_name}")
print(f" Page: {res.record.page}, Chunk: {res.record.chunk}") print(f" Page: {res.record.page}, Chunk: {res.record.chunk}")
# Replace all whitespace characters with regular spaces for cleaner display # Replace all whitespace characters with regular spaces for cleaner display
clean_text = ' '.join(res.record.text[:200].split()) clean_text = " ".join(res.record.text[:200].split())
print(f" Text preview: {clean_text}...") print(f" Text preview: {clean_text}...")
if i < len(results): if i < len(results):
print("-" * 40) print("-" * 40)
except Exception as e: except Exception as e:
print(f"Error querying database: {e}") print(f"Error querying database: {e}")
def start_web_server(db_path: str, host: str = "127.0.0.1", port: int = 5000): def start_web_server(db_path: str, host: str = "127.0.0.1", port: int = 5000):
"""Start a web server for the semantic search tool.""" """Start a web server for the semantic search tool."""
try: try:
@@ -190,63 +212,67 @@ def start_web_server(db_path: str, host: str = "127.0.0.1", port: int = 5000):
# Set template_folder to 'templates' directory # Set template_folder to 'templates' directory
app = Flask(__name__, template_folder="templates") app = Flask(__name__, template_folder="templates")
db_file = Path(db_path) db_file = Path(db_path)
# Check if database exists # Check if database exists
if not db_file.exists(): if not db_file.exists():
print(f"❌ Database file not found: {db_file}") print(f"❌ Database file not found: {db_file}")
print(" Create a database first using: python main.py create") print(" Create a database first using: python main.py create")
sys.exit(1) sys.exit(1)
@app.route('/') @app.route("/")
def index(): def index():
return render_template("index.html", results=None) return render_template("index.html", results=None)
@app.route('/file/<int:document_index>') @app.route("/file/<int:document_index>")
def serve_file(document_index): def serve_file(document_index):
"""Serve PDF files directly.""" """Serve PDF files directly."""
try: try:
file_path = db.get_document_path(db_file, document_index) file_path = db.get_document_path(db_file, document_index)
if not file_path.exists(): if not file_path.exists():
return jsonify({'error': 'File not found'}), 404 return jsonify({"error": "File not found"}), 404
return send_file(file_path, as_attachment=False) return send_file(file_path, as_attachment=False)
except Exception as e: except Exception as e:
return jsonify({'error': str(e)}), 500 return jsonify({"error": str(e)}), 500
@app.route('/api/search', methods=['POST']) @app.route("/api/search", methods=["POST"])
def search(): def search():
try: try:
data = request.get_json() data = request.get_json()
if not data or 'query' not in data: if not data or "query" not in data:
return jsonify({'error': 'Missing query parameter'}), 400 return jsonify({"error": "Missing query parameter"}), 400
query_text = data['query'].strip() query_text = data["query"].strip()
if not query_text: if not query_text:
return jsonify({'error': 'Query cannot be empty'}), 400 return jsonify({"error": "Query cannot be empty"}), 400
# Perform the search # Perform the search
results = db.query(db_file, query_text) results = db.query(db_file, query_text)
# Format results for JSON response # Format results for JSON response
formatted_results = [] formatted_results = []
for res in results: for res in results:
formatted_results.append({ formatted_results.append(
'distance': float(res.distance), {
'document_name': res.document_name, "distance": float(res.distance),
'document_index': res.record.document_index, "document_name": res.document_name,
'page': res.record.page, "document_index": res.record.document_index,
'chunk': res.record.chunk, "page": res.record.page,
'text': ' '.join(res.record.text[:300].split()) # Clean and truncate text "chunk": res.record.chunk,
}) "text": " ".join(
return jsonify({'results': formatted_results}) res.record.text[:300].split()
), # Clean and truncate text
}
)
return jsonify({"results": formatted_results})
except Exception as e: except Exception as e:
return jsonify({'error': str(e)}), 500 return jsonify({"error": str(e)}), 500
print("🚀 Starting web server...") print("🚀 Starting web server...")
print(f" Database: {db_file}") print(f" Database: {db_file}")
print(f" URL: http://{host}:{port}") print(f" URL: http://{host}:{port}")
print(" Press Ctrl+C to stop") print(" Press Ctrl+C to stop")
try: try:
app.run(host=host, port=port, debug=False) app.run(host=host, port=port, debug=False)
except KeyboardInterrupt: except KeyboardInterrupt:
@@ -258,49 +284,71 @@ def start_web_server(db_path: str, host: str = "127.0.0.1", port: int = 5000):
def main(): def main():
parser = argparse.ArgumentParser( parser = argparse.ArgumentParser(
description="Semantic Search Tool", description="Semantic Search Tool",
formatter_class=argparse.RawDescriptionHelpFormatter formatter_class=argparse.RawDescriptionHelpFormatter,
) )
# Create subparsers for different commands # Create subparsers for different commands
subparsers = parser.add_subparsers(dest='command', help='Available commands') subparsers = parser.add_subparsers(dest="command", help="Available commands")
# Create command # Create command
create_parser = subparsers.add_parser('create', aliases=['c'], help='Create a new empty database') create_parser = subparsers.add_parser(
create_parser.add_argument('db_path', nargs='?', default=str(DEFAULT_DB_PATH), "create", aliases=["c"], help="Create a new empty database"
help=f'Path to database file (default: {DEFAULT_DB_PATH})') )
create_parser.add_argument(
"db_path",
nargs="?",
default=str(DEFAULT_DB_PATH),
help=f"Path to database file (default: {DEFAULT_DB_PATH})",
)
# Add file command # Add file command
add_parser = subparsers.add_parser('add-file', aliases=['a'], help='Add one or more files to the search database') add_parser = subparsers.add_parser(
add_parser.add_argument('db', help='Path to the database file (e.g., db.pkl)') "add-file", aliases=["a"], help="Add one or more files to the search database"
add_parser.add_argument('file_paths', nargs='+', help='Path(s) to the PDF file(s) to add') )
add_parser.add_argument("db", help="Path to the database file (e.g., db.pkl)")
add_parser.add_argument(
"file_paths", nargs="+", help="Path(s) to the PDF file(s) to add"
)
# Query command # Query command
query_parser = subparsers.add_parser('query', aliases=['q'], help='Query the search database') query_parser = subparsers.add_parser(
query_parser.add_argument('db', help='Path to the database file (e.g., db.pkl)') "query", aliases=["q"], help="Query the search database"
query_parser.add_argument('query_text', help='Text to search for') )
query_parser.add_argument("db", help="Path to the database file (e.g., db.pkl)")
query_parser.add_argument("query_text", help="Text to search for")
# Host command (web server) # Host command (web server)
host_parser = subparsers.add_parser('host', aliases=['h'], help='Start a web server for semantic search') host_parser = subparsers.add_parser(
host_parser.add_argument('db', help='Path to the database file (e.g., db.pkl)') "host", aliases=["h"], help="Start a web server for semantic search"
host_parser.add_argument('--host', default='127.0.0.1', help='Host address to bind to (default: 127.0.0.1)') )
host_parser.add_argument('--port', type=int, default=5000, help='Port to listen on (default: 5000)') host_parser.add_argument("db", help="Path to the database file (e.g., db.pkl)")
host_parser.add_argument(
"--host",
default="127.0.0.1",
help="Host address to bind to (default: 127.0.0.1)",
)
host_parser.add_argument(
"--port", type=int, default=5000, help="Port to listen on (default: 5000)"
)
# Test command # Test command
subparsers.add_parser('test', aliases=['t'], help='Test database save/load functionality') subparsers.add_parser(
"test", aliases=["t"], help="Test database save/load functionality"
)
# Parse arguments # Parse arguments
args = parser.parse_args() args = parser.parse_args()
# Handle commands # Handle commands
if args.command in ['create', 'c']: if args.command in ["create", "c"]:
create_database(args.db_path) create_database(args.db_path)
elif args.command in ['add-file', 'a']: elif args.command in ["add-file", "a"]:
add_file(args.db, args.file_paths) add_file(args.db, args.file_paths)
elif args.command in ['query', 'q']: elif args.command in ["query", "q"]:
query(args.db, args.query_text) query(args.db, args.query_text)
elif args.command in ['host', 'h']: elif args.command in ["host", "h"]:
start_web_server(args.db, args.host, args.port) start_web_server(args.db, args.host, args.port)
elif args.command in ['test', 't']: elif args.command in ["test", "t"]:
test_database() test_database()
else: else:
parser.print_help() parser.print_help()