pathfinding_demo/python/pathfinding_demo.py
2025-09-20 14:23:27 +02:00

284 lines
8.5 KiB
Python

#!/usr/bin/env python
# coding: utf-8
#
# Imports
#
import matplotlib.pyplot as plt
import numpy as np
import time
from typing import Optional, NewType
from abc import ABC, abstractmethod
from queue import Queue
#
# Type and interfaces definition
#
Point2D = NewType("Point2D", tuple[int, int])
# type Point2D = tuple[int, int] # tuple(x, y)
type Path = list[Point2D]
class Map:
"""
2D map consisting of cells with given cost
"""
# array not defined as private, as plotting utilities work with it directly
array: np.ndarray
_visited_nodes: int
def __init__(self, width: int, height: int) -> None:
assert width > 0
assert height > 0
rows = height
cols = width
self.array = np.zeros((rows, cols), dtype=np.float64)
self._visited_nodes = 0
def Randomize(self, low: float = 0.0, high: float = 1.0) -> None:
self.array = np.random.uniform(low, high, self.array.shape)
def IsPointValid(self, point: Point2D) -> bool:
x, y = point
y_max, x_max = self.array.shape
x_in_bounds = (0 <= x < x_max)
y_in_bounds = (0 <= y < y_max)
return x_in_bounds and y_in_bounds
def GetNeighbours(self, center_point: Point2D) -> list[Point2D]:
"""
Get list of neighboring points (without actually visiting them)
"""
points: list[Point2D] = []
x_center, y_center = center_point
for x in range(-1,2):
for y in range(-1,2):
if x == 0 and y == 0:
continue
p = Point2D((x + x_center, y + y_center))
if self.IsPointValid(p):
points.append(p)
return points
def GetPointCost(self, point: Point2D) -> float:
x, y = point
row, col = y, x
return self.array[(row, col)]
def GetPathCost(self, path: Path) -> float:
return sum([self.GetPointCost(p) for p in path])
def ResetVisitedCount(self) -> None:
self._visited_nodes = 0
def GetVisitedCount(self) -> int:
return self._visited_nodes
def Visit(self, point: Point2D) -> float:
"""
Visit the node and return its cost
"""
if not self.IsPointValid(point):
raise ValueError("Point out of bounds")
self._visited_nodes += 1
return self.GetPointCost(point)
#
# Drawing utilities
#
class Visualizer:
_axes: Optional[plt.Axes]
_cmap: plt.Colormap
_cmap_counter: int
def __init__(self):
self._axes = None
self._cmap = plt.get_cmap('tab10')
self._cmap_counter = 0
def DrawMap(self, m: Map):
M, N = m.array.shape
_, ax = plt.subplots()
ax.imshow(m.array, cmap='gist_earth', origin='lower', interpolation='none')
self._axes = ax
def DrawPath(self, path: Path, label: str = "Path"):
"""
Draw path on a map. Note that DrawMap has to be called first
"""
assert self._axes is not None, "DrawMap must be called first"
xs, ys = zip(*path)
color = self._cmap(self._cmap_counter)
self._cmap_counter += 1
self._axes.plot(xs, ys, 'o-', color=color, label=label)
self._axes.plot(xs[0], ys[0], 'o', color='lime', markersize=8) # starting point
self._axes.plot(xs[-1], ys[-1], 'o', color='magenta', markersize=8) # end point
#
# Pathfinding implementations
#
class PathFinderBase(ABC):
name: str
_map: Optional[Map]
_elapsed_time_ns: int
_visited_node_count: int
def __init__(self) -> None:
self._map = None
self._elapsed_time_ns = 0
self._visited_node_count = 0
def SetMap(self, m: Map) -> None:
self._map = m
def CalculatePath(self, start: Point2D, end: Point2D) -> Optional[Path]:
"""
Calculate path on a given map.
Note: map must be set first using SetMap
"""
assert self._map is not None, "SetMap must be called first"
self._map.ResetVisitedCount()
start_time = time.perf_counter_ns()
res = self._CalculatePath(start, end)
stop_time = time.perf_counter_ns()
self._elapsed_time_ns = stop_time - start_time
self._visited_node_count = self._map.GetVisitedCount()
return res
@abstractmethod
def _CalculatePath(self, start: Point2D, end: Point2D) -> Optional[Path]:
"""
This method must be implemented by the derived classes
"""
def GetStats(self) -> tuple[int, int]:
"""
Return performance stats for the last calculation:
- elapsed time in nanoseconds,
- number of visited nodes during search
"""
return self._elapsed_time_ns, self._visited_node_count
class DFS(PathFinderBase):
"""
Recursive depth-first search; returns first path it finds
Not very efficient performance and memory-wise,
also returns very sub-optimal paths
"""
name = "Depth First Search"
def _CalculatePath(self,
point: Point2D,
end_point: Point2D,
path: Optional[list[Point2D]] = None,
visited: Optional[set[Point2D]] = None) -> Optional[Path]:
if visited is None:
visited = set()
if path is None:
path = list()
if self._map is None:
return None # to make mypy happy
# We don't need to know cost in this case, but we still want to track
# how many nodes we've visited
_ = self._map.Visit(point)
# we keep visited nodes in separate list and set,
# as membership check is faster for set than for list,
# but set is not ordered
visited.add(point)
path.append(point)
if point == end_point:
return path
for neighbor in self._map.GetNeighbours(point):
if neighbor not in visited:
res = self._CalculatePath(neighbor, end_point, path, visited)
if res:
return res
return None
class BFS(PathFinderBase):
"""
Iterative breadh-first search. Finds optimal path and creates flow-field,
so it would be good match for static maps with lots of agents with one
destination.
Compared to A*, this is more computationally expensive if we only want
to find path for one agent.
"""
name = "Breadth First Search"
# flow field and distance map
_came_from: dict[Point2D, Point2D]
_distance: dict[Point2D, float]
def _CalculatePath(self, start_point: Point2D, end_point: Point2D) -> Optional[Path]:
frontier: Queue[Point2D] = Queue()
frontier.put(end_point) # we start the computation from the end point
self._came_from: dict[Point2D, Optional[Point2D]] = { end_point: None }
self._distance: dict[Point2D, float] = { end_point: 0.0 }
# build "flow map"
while not frontier.empty():
current = frontier.get()
for next_point in self._map.GetNeighbours(current):
if next_point not in self._came_from:
frontier.put(next_point)
#self._distance[next_point] = self._distance[current] + 1.0
self._distance[next_point] = self._distance[current] + self._map.Visit(next_point)
self._came_from[next_point] = current
# find actual path
path: Path = []
current = start_point
path.append(current)
while self._came_from[current] is not None:
current = self._came_from[current]
path.append(current)
return path
class A_star(PathFinderBase):
name = "A*"
#
# Calculate paths using various methods and visualize them
#
def main():
# Define the map and start/stop points
m = Map(15,10)
m.Randomize()
starting_point: Point2D = Point2D((14,8))
end_point: Point2D = Point2D((1,1))
path_finder_classes: list[type[PathFinderBase]] = [
DFS,
BFS,
]
v = Visualizer()
v.DrawMap(m)
for pfc in path_finder_classes:
path_finder = pfc()
path_finder.SetMap(m)
path = path_finder.CalculatePath(starting_point, end_point)
elapsed_time, visited_nodes = path_finder.GetStats()
if path is not None:
cost = m.GetPathCost(path)
print(f"{path_finder.name:22}: took {elapsed_time/1e6:.3f} ms, visited {visited_nodes} nodes, cost {cost:.2f}")
v.DrawPath(path)
else:
print(f"{path_finder.name}: No path found")
plt.show()
if __name__ == "__main__":
main()