412 lines
8.8 KiB
C++

#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <concepts>
#include <initializer_list>
#include <iostream>
#include <numeric>
#include <ranges>
#include <utility>
#include <functional>
#ifdef _WIN32
#include <numbers>
#define M_PI std::numbers::pi
// TODO use std::numbers::pi instead of M_PI
#endif
template <typename T>
requires std::floating_point<T>
static inline bool equalEpsilon(const T &a, const T &b) {
constexpr auto epsilon = []() {
if constexpr (std::is_same_v<T, float>) {
return T{1e-5};
} else {
return T{1e-12}; // double, long double
}
}();
if (a == b) {
// handle special cases: bit equality, Inf...
return true;
}
return std::abs(a - b) < epsilon;
}
struct Any {};
template <typename T, size_t N, typename Tag = Any> class vec {
public:
vec() : m_Array{} {}
template <typename... ArgsT>
requires(std::same_as<ArgsT, T> && ...) && (sizeof...(ArgsT) == N)
vec(ArgsT... args) : m_Array{args...} {}
vec(std::array<T, N> array) : m_Array{array} {}
//
// Access to elements & data
//
const T &operator[](size_t index) const {
// we leave run-time checks to the underlying std::array
return m_Array[index];
}
T &operator[](size_t index) {
// we leave run-time checks to the underlying std::array
return m_Array[index];
}
friend std::ostream &operator<<(std::ostream &os, const vec &obj) {
os << "( ";
for (const auto &element : obj.m_Array) {
os << element << " ";
}
os << ")";
return os;
}
std::array<T,N>& Data() { return m_Array; }
//
// binary operators
//
friend bool operator==(const vec &a, const vec &b)
requires (std::is_integral_v<T>)
{
return std::ranges::equal(a.m_Array, b.m_Array);
}
friend bool operator==(const vec &a, const vec &b)
requires (std::is_floating_point_v<T>)
{
for (const auto &[u, v] : std::views::zip(a.m_Array, b.m_Array)) {
if (!equalEpsilon(u, v)) {
return false;
}
}
return true;
}
friend bool operator!=(const vec &a, const vec &b) { return !(a == b); }
friend vec operator+(const vec &a, const vec &b) {
vec<T, N, Tag> c;
std::ranges::transform(a.m_Array, b.m_Array, c.m_Array.begin(),
std::plus{});
return c;
}
friend vec operator-(const vec &a, const vec &b) {
vec<T, N, Tag> c;
std::ranges::transform(a.m_Array, b.m_Array, c.m_Array.begin(),
std::minus{});
return c;
}
friend vec operator*(const vec &a, const T &scalar) {
vec<T, N, Tag> c;
std::ranges::transform(a.m_Array, std::views::repeat(scalar),
c.m_Array.begin(), std::multiplies{});
return c;
}
friend vec operator*(const T &scalar, const vec &a) { return a * scalar; }
friend vec operator/(const vec &a, const T &scalar) {
vec<T, N, Tag> c;
std::ranges::transform(a.m_Array, std::views::repeat(scalar),
c.m_Array.begin(), std::divides{});
return c;
}
//
// compound-assignment operators
//
vec &operator+=(const vec &b) {
vec &a = *this;
std::ranges::transform(a.m_Array, b.m_Array, a.m_Array.begin(),
std::plus{});
return a;
}
vec &operator-=(const vec &b) {
vec &a = *this;
std::ranges::transform(a.m_Array, b.m_Array, a.m_Array.begin(),
std::minus{});
return a;
}
vec& operator/=(float scalar)
{
vec& a = *this;
auto b = std::views::repeat(scalar);
std::ranges::transform(a.m_Array, b, a.m_Array.begin(), std::divides{});
// TODO check all of this, could be done better with views instead of ranges?
return a;
}
//
// Utility functions
//
T LengthSquared() const {
return std::transform_reduce(m_Array.begin(), m_Array.end(), T{},
std::plus{}, [](T x) { return x * x; });
}
T Length() const { return std::sqrt(LengthSquared()); }
T DistanceTo(const vec &b) const {
const vec &a = *this;
return (a - b).Length();
}
T DistanceSquared(const vec &b) const {
const vec &a = *this;
return (a - b).LengthSquared();
}
//
// In-place vector operations
//
void Normalize() {
T length = Length();
if (equalEpsilon(length, T{0}))
return;
std::ranges::transform(m_Array, std::views::repeat(length), m_Array.begin(),
std::divides{});
}
//
// Methods returning new object
//
vec GetNormalized() const {
vec tmp = *this;
tmp.Normalize();
return tmp;
}
vec GetOrthogonal() const
requires(N == 2)
{
vec tmp = *this;
std::swap(tmp.m_Array[0], tmp.m_Array[1]);
tmp.m_Array[0] *= -1;
return tmp;
}
static T DotProduct(const vec& a, const vec& b)
{
return std::inner_product(
a.m_Array.begin(), a.m_Array.end(), b.m_Array.begin(),
T{}, std::plus{}, std::multiplies{});
}
T DotProduct(const vec& b) const
{
const auto& a = *this;
return DotProduct(a, b);
}
//
// Helpers
//
const T &x() const
requires(N >= 1)
{
return m_Array[0];
}
T &x()
requires(N >= 1)
{
return m_Array[0];
}
const T &y() const
requires(N >= 2)
{
return m_Array[1];
}
T &y()
requires(N >= 2)
{
return m_Array[1];
}
const T &z() const
requires(N >= 3)
{
return m_Array[2];
}
T &z()
requires(N >= 3)
{
return m_Array[2];
}
template <typename TargetTag>
vec<T,N,TargetTag> ChangeTag()
{
return vec<T,N,TargetTag>(m_Array);
}
private:
std::array<T, N> m_Array;
};
//
// Aliases
//
using vec2 = vec<float, 2>;
using vec3 = vec<float, 3>;
using vec4 = vec<float, 4>;
using dvec2 = vec<double, 2>;
using dvec3 = vec<double, 3>;
using dvec4 = vec<double, 4>;
using ivec2 = vec<std::int32_t, 2>;
using ivec3 = vec<std::int32_t, 3>;
using ivec4 = vec<std::int32_t, 4>;
using uvec2 = vec<std::uint32_t, 2>;
using uvec3 = vec<std::uint32_t, 3>;
using uvec4 = vec<std::uint32_t, 4>;
// tags for differentiating between domains
struct WorldPosTag {};
struct WorldSizeTag {};
struct WindowPosTag {};
struct WindowSizeTag {};
struct TilePosTag {};
struct TileSizeTag {};
// types for each domain
using WorldPos = vec<float, 2, WorldPosTag>;
using WindowPos = vec<float, 2, WindowPosTag>;
using TilePos = vec<int32_t, 2, TilePosTag>;
// Size
using WorldSize = vec<float, 2, WorldSizeTag>;
using WindowSize = vec<float, 2, WindowSizeTag>;
using TileSize = vec<int32_t, 2, TileSizeTag>;
//
// Utils
//
struct TilePosHash {
std::size_t operator()(const TilePos &p) const noexcept {
std::size_t h1 = std::hash<int>{}(p.x());
std::size_t h2 = std::hash<int>{}(p.y());
return h1 ^ (h2 + 0x9e3779b9 + (h1 << 6) + (h1 >> 2));
}
};
//
// Matrix
//
// Collumn major square matrix
template <typename T, size_t N, typename Tag = Any>
class Matrix {
using vec_type = vec<T, N, Tag>;
public:
Matrix() = default;
// Initialization using flat array of N*N elements
template <typename Tarr, size_t M>
requires (M == N*N && std::same_as<Tarr, T>)
Matrix(std::array<Tarr,M> array) : m_Array{}
{
std::size_t idx = 0;
for (auto col : array | std::views::chunk(N))
{
std::ranges::copy(col, m_Array[idx++].Data().begin());
}
}
const vec_type& operator[](size_t index) const { return m_Array[index]; }
vec_type& operator[](size_t index) { return m_Array[index]; }
friend std::ostream &operator<<(std::ostream &os, const Matrix &obj)
{
os << "( ";
for (const auto &element : obj.m_Array) {
os << element << " ";
}
os << ")";
return os;
}
friend Matrix operator+(const Matrix& A, const Matrix& B)
{
Matrix C;
std::ranges::transform(A.m_Array, B.m_Array, C.m_Array.begin(), std::plus{});
return C;
}
friend Matrix operator-(const Matrix& A, const Matrix& B)
{
Matrix C;
std::ranges::transform(A.m_Array, B.m_Array, C.m_Array.begin(), std::minus{});
return C;
}
friend Matrix operator*(const Matrix& A, const Matrix& B)
{
Matrix C;
for (size_t i = 0; i < N; i++)
{
for (size_t j = 0; j < N; j++)
{
T sum = 0;
for (size_t k = 0; k < N; ++k) sum += A[i][k] * B[k][j];
C[i][j] = sum;
}
}
return C;
}
friend vec_type operator*(const Matrix& A, const vec_type& b)
{
// we assume that b is row vector
vec_type c;
for (size_t i = 0; i < N; i++)
{
c[i] = b.DotProduct(A[i]);
}
return c;
}
static constexpr Matrix Eye()
{
Matrix E;
for (size_t i = 0; i < N; i++)
{
E[i][i] = T{1};
}
return E;
}
private:
std::array<vec_type, N> m_Array;
};