#include #include #include #include #include #include #include "log.hpp" #include "math.hpp" TEST(vec, DefaultConstruction) { // Test that default-constucted vector // has all elements equal to zero vec3 v1; ASSERT_EQ(v1[0], 0.0); ASSERT_EQ(v1[1], 0.0); ASSERT_EQ(v1[2], 0.0); } TEST(vec, GetElements) { // Test operator[] ivec3 v1{12, 34, 56}; ASSERT_EQ(v1[0], 12); ASSERT_EQ(v1[1], 34); ASSERT_EQ(v1[2], 56); } TEST(vec, equalEpsilon) { // Test equalEpsilon // TODO just an ad-hoc test, // can possibly fail for other machines. // This needs some work vec3 v1{1.0f, 2.0f, 3.0f}; vec3 v2{0.999999f, 1.9999999f, 2.9999999f}; ASSERT_EQ(v1, v2); } TEST(vec, nonEqualEpsilon) { // Test operator!= vec3 v1{1.0f, 2.0f, 3.0f}; vec3 v2{2.0f, 4.0f, 6.0f}; ASSERT_NE(v1, v2); } TEST(vec, LogPrint) { // Test that logger can print the vector of different types // and sizes vec2 v2(1.2f, 3.4f); vec3 v3(1.2f, 3.4f, 5.6f); vec4 v4(1.2f, 3.4f, 5.6f, 7.8f); dvec2 dv2(1.2, 3.4); dvec3 dv3(1.2, 3.4, 5.6); dvec4 dv4(1.2, 3.4, 5.6, 7.8); ivec2 iv2(1, 3); ivec3 iv3(1, 3, 5); ivec4 iv4(1, 3, 5, 7); uvec2 uv2(1u, 3u); uvec3 uv3(1u, 3u, 5u); uvec4 uv4(1u, 3u, 5u, 7u); LOG_DEBUG("vec2 ", v2); LOG_DEBUG("vec3 ", v3); LOG_DEBUG("vec4 ", v4); LOG_DEBUG("dvec2 ", dv2); LOG_DEBUG("dvec3 ", dv3); LOG_DEBUG("dvec4 ", dv4); LOG_DEBUG("ivec2 ", iv2); LOG_DEBUG("ivec3 ", iv3); LOG_DEBUG("ivec4 ", iv4); LOG_DEBUG("uvec2 ", uv2); LOG_DEBUG("uvec3 ", uv3); LOG_DEBUG("uvec4 ", uv4); } TEST(vec, Add) { // Test operator+ with float vectors vec3 v1{1.0f, 2.0f, 3.0f}; vec3 v2{4.0f, 5.0f, 6.0f}; vec3 result = v1 + v2; ASSERT_FLOAT_EQ(result[0], 5.0f); ASSERT_FLOAT_EQ(result[1], 7.0f); ASSERT_FLOAT_EQ(result[2], 9.0f); // Test operator+ with integer vectors ivec3 iv1{1, 2, 3}; ivec3 iv2{10, 20, 30}; ivec3 iresult = iv1 + iv2; ASSERT_EQ(iresult[0], 11); ASSERT_EQ(iresult[1], 22); ASSERT_EQ(iresult[2], 33); // Test that original vectors are unchanged ASSERT_FLOAT_EQ(v1[0], 1.0f); ASSERT_FLOAT_EQ(v1[1], 2.0f); ASSERT_FLOAT_EQ(v1[2], 3.0f); } TEST(vec, Sub) { // Test operator- with float vectors vec3 v1{5.0f, 7.0f, 9.0f}; vec3 v2{1.0f, 2.0f, 3.0f}; vec3 result = v1 - v2; ASSERT_FLOAT_EQ(result[0], 4.0f); ASSERT_FLOAT_EQ(result[1], 5.0f); ASSERT_FLOAT_EQ(result[2], 6.0f); // Test operator- with integer vectors ivec3 iv1{30, 20, 10}; ivec3 iv2{5, 3, 1}; ivec3 iresult = iv1 - iv2; ASSERT_EQ(iresult[0], 25); ASSERT_EQ(iresult[1], 17); ASSERT_EQ(iresult[2], 9); // Test that original vectors are unchanged ASSERT_FLOAT_EQ(v1[0], 5.0f); ASSERT_FLOAT_EQ(v1[1], 7.0f); ASSERT_FLOAT_EQ(v1[2], 9.0f); // Test subtraction resulting in negative values vec3 v3{1.0f, 2.0f, 3.0f}; vec3 v4{4.0f, 5.0f, 6.0f}; vec3 negative_result = v3 - v4; ASSERT_FLOAT_EQ(negative_result[0], -3.0f); ASSERT_FLOAT_EQ(negative_result[1], -3.0f); ASSERT_FLOAT_EQ(negative_result[2], -3.0f); } TEST(vec, ScalarMultiplication) { // Test scalar * vector with float vectors vec3 v1{2.0f, 3.0f, 4.0f}; vec3 result = v1 * 2.5f; ASSERT_FLOAT_EQ(result[0], 5.0f); ASSERT_FLOAT_EQ(result[1], 7.5f); ASSERT_FLOAT_EQ(result[2], 10.0f); // Test scalar * vector with integer vectors ivec3 iv1{3, 5, 7}; ivec3 iresult = iv1 * 2; ASSERT_EQ(iresult[0], 6); ASSERT_EQ(iresult[1], 10); ASSERT_EQ(iresult[2], 14); // Test that original vector is unchanged ASSERT_FLOAT_EQ(v1[0], 2.0f); ASSERT_FLOAT_EQ(v1[1], 3.0f); ASSERT_FLOAT_EQ(v1[2], 4.0f); // Test multiplication by zero vec3 v2{1.0f, 2.0f, 3.0f}; vec3 zero_result = v2 * 0.0f; ASSERT_FLOAT_EQ(zero_result[0], 0.0f); ASSERT_FLOAT_EQ(zero_result[1], 0.0f); ASSERT_FLOAT_EQ(zero_result[2], 0.0f); // Test multiplication by negative scalar (and different ordering) vec3 v3{1.0f, -2.0f, 3.0f}; vec3 negative_result = -2.0f * v3; ASSERT_FLOAT_EQ(negative_result[0], -2.0f); ASSERT_FLOAT_EQ(negative_result[1], 4.0f); ASSERT_FLOAT_EQ(negative_result[2], -6.0f); } TEST(vec, ScalarDivision) { // Test vector / scalar with float vectors vec3 v1{10.0f, 15.0f, 20.0f}; vec3 result = v1 / 2.5f; ASSERT_FLOAT_EQ(result[0], 4.0f); ASSERT_FLOAT_EQ(result[1], 6.0f); ASSERT_FLOAT_EQ(result[2], 8.0f); // Test vector / scalar with integer vectors ivec3 iv1{12, 18, 24}; ivec3 iresult = iv1 / 2; ASSERT_EQ(iresult[0], 6); ASSERT_EQ(iresult[1], 9); ASSERT_EQ(iresult[2], 12); // Test that original vector is unchanged ASSERT_FLOAT_EQ(v1[0], 10.0f); ASSERT_FLOAT_EQ(v1[1], 15.0f); ASSERT_FLOAT_EQ(v1[2], 20.0f); // Test division by negative scalar vec3 v2{6.0f, -9.0f, 12.0f}; vec3 negative_result = v2 / -3.0f; ASSERT_FLOAT_EQ(negative_result[0], -2.0f); ASSERT_FLOAT_EQ(negative_result[1], 3.0f); ASSERT_FLOAT_EQ(negative_result[2], -4.0f); // Test division by fractional scalar vec3 v3{1.0f, 2.0f, 3.0f}; vec3 fractional_result = v3 / 0.5f; ASSERT_FLOAT_EQ(fractional_result[0], 2.0f); ASSERT_FLOAT_EQ(fractional_result[1], 4.0f); ASSERT_FLOAT_EQ(fractional_result[2], 6.0f); } TEST(vec, AdditionAssignment) { // Test operator+= with float vectors vec3 v1{1.0f, 2.0f, 3.0f}; vec3 v2{4.0f, 5.0f, 6.0f}; v1 += v2; ASSERT_FLOAT_EQ(v1[0], 5.0f); ASSERT_FLOAT_EQ(v1[1], 7.0f); ASSERT_FLOAT_EQ(v1[2], 9.0f); // Test that v2 is unchanged ASSERT_FLOAT_EQ(v2[0], 4.0f); ASSERT_FLOAT_EQ(v2[1], 5.0f); ASSERT_FLOAT_EQ(v2[2], 6.0f); // Test operator+= with integer vectors ivec3 iv1{10, 20, 30}; ivec3 iv2{1, 2, 3}; iv1 += iv2; ASSERT_EQ(iv1[0], 11); ASSERT_EQ(iv1[1], 22); ASSERT_EQ(iv1[2], 33); // Test chaining vec3 v3{1.0f, 1.0f, 1.0f}; vec3 v4{2.0f, 2.0f, 2.0f}; vec3 v5{3.0f, 3.0f, 3.0f}; v3 += v4 += v5; ASSERT_FLOAT_EQ(v3[0], 6.0f); ASSERT_FLOAT_EQ(v3[1], 6.0f); ASSERT_FLOAT_EQ(v3[2], 6.0f); ASSERT_FLOAT_EQ(v4[0], 5.0f); ASSERT_FLOAT_EQ(v4[1], 5.0f); ASSERT_FLOAT_EQ(v4[2], 5.0f); } TEST(vec, SubtractionAssignment) { // Test operator-= with float vectors vec3 v1{10.0f, 15.0f, 20.0f}; vec3 v2{3.0f, 5.0f, 7.0f}; v1 -= v2; ASSERT_FLOAT_EQ(v1[0], 7.0f); ASSERT_FLOAT_EQ(v1[1], 10.0f); ASSERT_FLOAT_EQ(v1[2], 13.0f); // Test that v2 is unchanged ASSERT_FLOAT_EQ(v2[0], 3.0f); ASSERT_FLOAT_EQ(v2[1], 5.0f); ASSERT_FLOAT_EQ(v2[2], 7.0f); // Test operator-= with integer vectors ivec3 iv1{50, 40, 30}; ivec3 iv2{5, 10, 15}; iv1 -= iv2; ASSERT_EQ(iv1[0], 45); ASSERT_EQ(iv1[1], 30); ASSERT_EQ(iv1[2], 15); // Test subtraction resulting in negative values vec3 v3{1.0f, 2.0f, 3.0f}; vec3 v4{4.0f, 5.0f, 6.0f}; v3 -= v4; ASSERT_FLOAT_EQ(v3[0], -3.0f); ASSERT_FLOAT_EQ(v3[1], -3.0f); ASSERT_FLOAT_EQ(v3[2], -3.0f); } TEST(vec, LengthSquared) { // Test LengthSquared with float vectors vec3 v1{3.0f, 4.0f, 0.0f}; ASSERT_FLOAT_EQ(v1.LengthSquared(), 25.0f); // 3² + 4² + 0² = 25 vec2 v2{1.0f, 1.0f}; ASSERT_FLOAT_EQ(v2.LengthSquared(), 2.0f); // 1² + 1² = 2 // Test with zero vector vec3 zero{0.0f, 0.0f, 0.0f}; ASSERT_FLOAT_EQ(zero.LengthSquared(), 0.0f); } TEST(vec, Length) { // Test Length with float vectors vec3 v1{3.0f, 4.0f, 0.0f}; ASSERT_FLOAT_EQ(v1.Length(), 5.0f); // sqrt(3² + 4² + 0²) = 5 vec2 v2{1.0f, 1.0f}; ASSERT_NEAR(v2.Length(), 1.414213f, 1e-5f); // sqrt(2) ≈ 1.414213 // Test with zero vector vec3 zero{0.0f, 0.0f, 0.0f}; ASSERT_FLOAT_EQ(zero.Length(), 0.0f); } TEST(vec, Normalize) { // Test Normalize with float vectors vec3 v1{3.0f, 4.0f, 0.0f}; v1.Normalize(); ASSERT_FLOAT_EQ(v1[0], 0.6f); // 3/5 ASSERT_FLOAT_EQ(v1[1], 0.8f); // 4/5 ASSERT_FLOAT_EQ(v1[2], 0.0f); ASSERT_NEAR(v1.Length(), 1.0f, 1e-6f); // Test with zero vector (may produce NaN - implementation dependent) vec3 zero{0.0f, 0.0f, 0.0f}; zero.Normalize(); // Check if result is NaN (which is expected for zero vector normalization) ASSERT_TRUE(zero[0] == 0.0f); ASSERT_TRUE(zero[1] == 0.0f); ASSERT_TRUE(zero[2] == 0.0f); } TEST(vec, GetNormalized) { // Test GetNormalized with float vectors const vec3 v1{3.0f, 4.0f, 0.0f}; vec3 normalized = v1.GetNormalized(); // Original vector should be unchanged ASSERT_FLOAT_EQ(v1[0], 3.0f); ASSERT_FLOAT_EQ(v1[1], 4.0f); ASSERT_FLOAT_EQ(v1[2], 0.0f); // Normalized copy should be unit length ASSERT_FLOAT_EQ(normalized[0], 0.6f); // 3/5 ASSERT_FLOAT_EQ(normalized[1], 0.8f); // 4/5 ASSERT_FLOAT_EQ(normalized[2], 0.0f); ASSERT_NEAR(normalized.Length(), 1.0f, 1e-6f); // Test with zero vector vec3 zero{0.0f, 0.0f, 0.0f}; vec3 zero_normalized = zero.GetNormalized(); ASSERT_FLOAT_EQ(zero_normalized[0], 0.0f); ASSERT_FLOAT_EQ(zero_normalized[1], 0.0f); ASSERT_FLOAT_EQ(zero_normalized[2], 0.0f); // Original zero vector should be unchanged ASSERT_FLOAT_EQ(zero[0], 0.0f); ASSERT_FLOAT_EQ(zero[1], 0.0f); ASSERT_FLOAT_EQ(zero[2], 0.0f); } TEST(vec, GetOrthogonal) { const vec2 v1{5.0f, 1.0f}; auto v2 = v1.GetOrthogonal(); ASSERT_FLOAT_EQ(v2[0], -1.0f); ASSERT_FLOAT_EQ(v2[1], 5.0f); } TEST(vec, DistanceTo) { // Test DistanceTo with 3D vectors vec3 v1{0.0f, 0.0f, 0.0f}; vec3 v2{3.0f, 4.0f, 0.0f}; float distance = v1.DistanceTo(v2); ASSERT_FLOAT_EQ(distance, 5.0f); // 3-4-5 triangle // Distance should be symmetric ASSERT_FLOAT_EQ(v2.DistanceTo(v1), distance); // Test with 2D vectors vec2 a{1.0f, 1.0f}; vec2 b{4.0f, 5.0f}; float distance_2d = a.DistanceTo(b); ASSERT_FLOAT_EQ(distance_2d, 5.0f); // sqrt((4-1)² + (5-1)²) = sqrt(9+16) = 5 // Distance to self should be zero ASSERT_FLOAT_EQ(v1.DistanceTo(v1), 0.0f); ASSERT_FLOAT_EQ(a.DistanceTo(a), 0.0f); // Test that original vectors are unchanged ASSERT_FLOAT_EQ(v1[0], 0.0f); ASSERT_FLOAT_EQ(v1[1], 0.0f); ASSERT_FLOAT_EQ(v1[2], 0.0f); ASSERT_FLOAT_EQ(v2[0], 3.0f); ASSERT_FLOAT_EQ(v2[1], 4.0f); ASSERT_FLOAT_EQ(v2[2], 0.0f); } TEST(vec, ChainedOperations) { vec2 a{1.0f, 2.0f}; vec2 b{3.0f, 4.0f}; // Test chaining: (a + b) * 2.0f auto result = (a + b) * 2.0f; ASSERT_FLOAT_EQ(result[0], 8.0f); ASSERT_FLOAT_EQ(result[1], 12.0f); // Test chaining with assignment a += b; a = a * 0.5f; ASSERT_FLOAT_EQ(a[0], 2.0f); ASSERT_FLOAT_EQ(a[1], 3.0f); } int main(int argc, char **argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }