Merge pull request #32 from potatopplking/feature/positional_container

Feature/positional container
This commit is contained in:
potatopplking
2025-10-31 17:39:53 +01:00
committed by GitHub
38 changed files with 1811 additions and 635 deletions

297
.clang-format Normal file
View File

@@ -0,0 +1,297 @@
---
Language: Cpp
AccessModifierOffset: -2
AlignAfterOpenBracket: Align
AlignArrayOfStructures: None
AlignConsecutiveAssignments:
Enabled: false
AcrossEmptyLines: false
AcrossComments: false
AlignCompound: false
AlignFunctionDeclarations: false
AlignFunctionPointers: false
PadOperators: true
AlignConsecutiveBitFields:
Enabled: false
AcrossEmptyLines: false
AcrossComments: false
AlignCompound: false
AlignFunctionDeclarations: false
AlignFunctionPointers: false
PadOperators: false
AlignConsecutiveDeclarations:
Enabled: false
AcrossEmptyLines: false
AcrossComments: false
AlignCompound: false
AlignFunctionDeclarations: true
AlignFunctionPointers: false
PadOperators: false
AlignConsecutiveMacros:
Enabled: false
AcrossEmptyLines: false
AcrossComments: false
AlignCompound: false
AlignFunctionDeclarations: false
AlignFunctionPointers: false
PadOperators: false
AlignConsecutiveShortCaseStatements:
Enabled: false
AcrossEmptyLines: false
AcrossComments: false
AlignCaseArrows: false
AlignCaseColons: false
AlignConsecutiveTableGenBreakingDAGArgColons:
Enabled: false
AcrossEmptyLines: false
AcrossComments: false
AlignCompound: false
AlignFunctionDeclarations: false
AlignFunctionPointers: false
PadOperators: false
AlignConsecutiveTableGenCondOperatorColons:
Enabled: false
AcrossEmptyLines: false
AcrossComments: false
AlignCompound: false
AlignFunctionDeclarations: false
AlignFunctionPointers: false
PadOperators: false
AlignConsecutiveTableGenDefinitionColons:
Enabled: false
AcrossEmptyLines: false
AcrossComments: false
AlignCompound: false
AlignFunctionDeclarations: false
AlignFunctionPointers: false
PadOperators: false
AlignEscapedNewlines: Right
AlignOperands: Align
AlignTrailingComments:
Kind: Always
OverEmptyLines: 0
AllowAllArgumentsOnNextLine: true
AllowAllParametersOfDeclarationOnNextLine: true
AllowBreakBeforeNoexceptSpecifier: Never
AllowShortBlocksOnASingleLine: Never
AllowShortCaseExpressionOnASingleLine: true
AllowShortCaseLabelsOnASingleLine: false
AllowShortCompoundRequirementOnASingleLine: true
AllowShortEnumsOnASingleLine: true
AllowShortFunctionsOnASingleLine: All
AllowShortIfStatementsOnASingleLine: Never
AllowShortLambdasOnASingleLine: All
AllowShortLoopsOnASingleLine: false
AllowShortNamespacesOnASingleLine: false
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakBeforeMultilineStrings: false
AttributeMacros:
- __capability
BinPackArguments: true
BinPackLongBracedList: true
BinPackParameters: BinPack
BitFieldColonSpacing: Both
BracedInitializerIndentWidth: -1
BraceWrapping:
AfterCaseLabel: false
AfterClass: false
AfterControlStatement: Never
AfterEnum: false
AfterExternBlock: false
AfterFunction: false
AfterNamespace: false
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
BeforeCatch: false
BeforeElse: false
BeforeLambdaBody: false
BeforeWhile: false
IndentBraces: false
SplitEmptyFunction: true
SplitEmptyRecord: true
SplitEmptyNamespace: true
BreakAdjacentStringLiterals: true
BreakAfterAttributes: Leave
BreakAfterJavaFieldAnnotations: false
BreakAfterReturnType: None
BreakArrays: true
BreakBeforeBinaryOperators: None
BreakBeforeConceptDeclarations: Always
BreakBeforeBraces: Attach
BreakBeforeInlineASMColon: OnlyMultiline
BreakBeforeTemplateCloser: false
BreakBeforeTernaryOperators: true
BreakBinaryOperations: Never
BreakConstructorInitializers: BeforeColon
BreakFunctionDefinitionParameters: false
BreakInheritanceList: BeforeColon
BreakStringLiterals: true
BreakTemplateDeclarations: MultiLine
ColumnLimit: 80
CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: true
DerivePointerAlignment: false
DisableFormat: false
EmptyLineAfterAccessModifier: Never
EmptyLineBeforeAccessModifier: LogicalBlock
EnumTrailingComma: Leave
ExperimentalAutoDetectBinPacking: false
FixNamespaceComments: true
ForEachMacros:
- foreach
- Q_FOREACH
- BOOST_FOREACH
IfMacros:
- KJ_IF_MAYBE
IncludeBlocks: Preserve
IncludeCategories:
- Regex: '^"(llvm|llvm-c|clang|clang-c)/'
Priority: 2
SortPriority: 0
CaseSensitive: false
- Regex: '^(<|"(gtest|gmock|isl|json)/)'
Priority: 3
SortPriority: 0
CaseSensitive: false
- Regex: '.*'
Priority: 1
SortPriority: 0
CaseSensitive: false
IncludeIsMainRegex: '(Test)?$'
IncludeIsMainSourceRegex: ''
IndentAccessModifiers: false
IndentCaseBlocks: false
IndentCaseLabels: false
IndentExportBlock: true
IndentExternBlock: AfterExternBlock
IndentGotoLabels: true
IndentPPDirectives: None
IndentRequiresClause: true
IndentWidth: 2
IndentWrappedFunctionNames: false
InsertBraces: false
InsertNewlineAtEOF: false
InsertTrailingCommas: None
IntegerLiteralSeparator:
Binary: 0
BinaryMinDigits: 0
Decimal: 0
DecimalMinDigits: 0
Hex: 0
HexMinDigits: 0
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLines:
AtEndOfFile: false
AtStartOfBlock: true
AtStartOfFile: true
KeepFormFeed: false
LambdaBodyIndentation: Signature
LineEnding: DeriveLF
MacroBlockBegin: ''
MacroBlockEnd: ''
MainIncludeChar: Quote
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCBinPackProtocolList: Auto
ObjCBlockIndentWidth: 2
ObjCBreakBeforeNestedBlockParam: true
ObjCSpaceAfterProperty: false
ObjCSpaceBeforeProtocolList: true
OneLineFormatOffRegex: ''
PackConstructorInitializers: BinPack
PenaltyBreakAssignment: 2
PenaltyBreakBeforeFirstCallParameter: 19
PenaltyBreakBeforeMemberAccess: 150
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakOpenParenthesis: 0
PenaltyBreakScopeResolution: 500
PenaltyBreakString: 1000
PenaltyBreakTemplateDeclaration: 10
PenaltyExcessCharacter: 1000000
PenaltyIndentedWhitespace: 0
PenaltyReturnTypeOnItsOwnLine: 60
PointerAlignment: Right
PPIndentWidth: -1
QualifierAlignment: Leave
ReferenceAlignment: Pointer
ReflowComments: Always
RemoveBracesLLVM: false
RemoveEmptyLinesInUnwrappedLines: false
RemoveParentheses: Leave
RemoveSemicolon: false
RequiresClausePosition: OwnLine
RequiresExpressionIndentation: OuterScope
SeparateDefinitionBlocks: Leave
ShortNamespaceLines: 1
SkipMacroDefinitionBody: false
SortIncludes:
Enabled: true
IgnoreCase: false
SortJavaStaticImport: Before
SortUsingDeclarations: LexicographicNumeric
SpaceAfterCStyleCast: false
SpaceAfterLogicalNot: false
SpaceAfterOperatorKeyword: false
SpaceAfterTemplateKeyword: true
SpaceAroundPointerQualifiers: Default
SpaceBeforeAssignmentOperators: true
SpaceBeforeCaseColon: false
SpaceBeforeCpp11BracedList: false
SpaceBeforeCtorInitializerColon: true
SpaceBeforeInheritanceColon: true
SpaceBeforeJsonColon: false
SpaceBeforeParens: ControlStatements
SpaceBeforeParensOptions:
AfterControlStatements: true
AfterForeachMacros: true
AfterFunctionDefinitionName: false
AfterFunctionDeclarationName: false
AfterIfMacros: true
AfterNot: false
AfterOverloadedOperator: false
AfterPlacementOperator: true
AfterRequiresInClause: false
AfterRequiresInExpression: false
BeforeNonEmptyParentheses: false
SpaceBeforeRangeBasedForLoopColon: true
SpaceBeforeSquareBrackets: false
SpaceInEmptyBlock: false
SpacesBeforeTrailingComments: 1
SpacesInAngles: Never
SpacesInContainerLiterals: true
SpacesInLineCommentPrefix:
Minimum: 1
Maximum: -1
SpacesInParens: Never
SpacesInParensOptions:
ExceptDoubleParentheses: false
InCStyleCasts: false
InConditionalStatements: false
InEmptyParentheses: false
Other: false
SpacesInSquareBrackets: false
Standard: Latest
StatementAttributeLikeMacros:
- Q_EMIT
StatementMacros:
- Q_UNUSED
- QT_REQUIRE_VERSION
TableGenBreakInsideDAGArg: DontBreak
TabWidth: 8
UseTab: Never
VerilogBreakBetweenInstancePorts: true
WhitespaceSensitiveMacros:
- BOOST_PP_STRINGIZE
- CF_SWIFT_NAME
- NS_SWIFT_NAME
- PP_STRINGIZE
- STRINGIZE
WrapNamespaceBodyWithEmptyLines: Leave
...

26
.clang-uml Normal file
View File

@@ -0,0 +1,26 @@
# When configuring with cmake, use:
# cmake -B build -DCMAKE_EXPORT_COMPILE_COMMANDS=ON -DCMAKE_BUILD_TYPE=Debug
compilation_database_dir: build
# Path to system header needs to be specified,
# you will probably need to modify this
add_compile_flags:
- '-I/usr/lib/clang/21/include'
output_directory: docs/diagrams
diagrams:
class_diagram:
type: class
glob:
- cpp/src/**/*.cpp
- cpp/src/**/*.hpp
include_diagram:
type: include
glob:
- cpp/src/**/*.cpp
# Include also external system headers
#generate_system_headers: true
include:
# Include only files belonging to these paths
paths:
- cpp/src

View File

@@ -49,6 +49,9 @@ else()
set(SDL3_TARGET ${SDL3_LIBRARIES}) set(SDL3_TARGET ${SDL3_LIBRARIES})
set(SDL3_IMAGE_TARGET ${SDL3_image_LIBRARIES}) set(SDL3_IMAGE_TARGET ${SDL3_image_LIBRARIES})
set(GLEW_TARGET GLEW::GLEW) set(GLEW_TARGET GLEW::GLEW)
# Enable clang-tidy
set(CMAKE_CXX_CLANG_TIDY "clang-tidy")
endif() endif()
# Include directories # Include directories
@@ -185,7 +188,16 @@ if(MSVC)
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "/O2 /Zi /DNDEBUG") set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "/O2 /Zi /DNDEBUG")
set(CMAKE_CXX_FLAGS_MINSIZEREL "/O1 /DNDEBUG") set(CMAKE_CXX_FLAGS_MINSIZEREL "/O1 /DNDEBUG")
else() else()
# GCC/Clang flags # GCC/Clang flags with extended debugging symbols
set(CMAKE_CXX_FLAGS_DEBUG "-g -O0") set(CMAKE_CXX_FLAGS_DEBUG "-ggdb3 -O0")
set(CMAKE_CXX_FLAGS_RELEASE "-O3 -DNDEBUG") set(CMAKE_CXX_FLAGS_RELEASE "-O3 -DNDEBUG")
# Formatting target (clang only)
add_custom_target(format
COMMAND clang-format -i ${MAIN_SOURCES} ${HEADERS}
)
endif() endif()
list(TRANSFORM MAIN_SOURCES PREPEND "${CMAKE_SOURCE_DIR}/")
list(TRANSFORM HEADERS PREPEND "${CMAKE_SOURCE_DIR}/")

View File

@@ -2,8 +2,6 @@
![C++ pathfinding demo](./docs/img/screenshot_1.png) ![C++ pathfinding demo](./docs/img/screenshot_1.png)
**Work in progress**
This is a demo of pathfinding on a 2D grid. It consists of 2 main parts: This is a demo of pathfinding on a 2D grid. It consists of 2 main parts:
* python notes and implementation * python notes and implementation
@@ -52,13 +50,21 @@ TODO
* SDL3 * SDL3
* SDL3-image * SDL3-image
* GLEW * GLEW
* gtest
e.g. on Archlinux: e.g. on Archlinux:
``` ```
pacman -S glew sdl3 sdl3_image pacman -S glew sdl3 sdl3_image gtest
``` ```
Optional dependencies for generating class and include diagrams:
* plantuml
* [clang-uml](https://github.com/bkryza/clang-uml)
clang-uml needs to be either installed from [AUR](https://aur.archlinux.org/packages/clang-uml) or built manually
#### Build #### Build
```bash ```bash
@@ -68,12 +74,22 @@ cmake --build build -j 16
Optionally you can also use options: Optionally you can also use options:
* `-DCMAKE_EXPORT_COMPILE_COMMANDS=ON` to enable compile database export * `-DCMAKE_EXPORT_COMPILE_COMMANDS=ON` to enable compile database export (needed for class diagram generation)
* `-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++` to use clang * `-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++` to use clang
``` ```
cmake -B build -DCMAKE_EXPORT_COMPILE_COMMANDS=O -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ cmake -B build -DCMAKE_EXPORT_COMPILE_COMMANDS=O -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++
`````` ```
Run the `pathfinding` binary in the `build` folder. Run the `pathfinding` binary in the `build` folder.
#### Generate architecture diagrams
Build with `-DCMAKE_EXPORT_COMPILE_COMMANDS=ON`. Then in the root folder run:
```
clang-uml
plantuml -tsvg docs/diagrams/*.puml
```
The resulting svg files are located in [docs/diagrams/](./docs/diagrams/).

View File

@@ -1,45 +1,35 @@
#include "camera.hpp" #include "camera.hpp"
#include "math.hpp"
#include "log.hpp" #include "log.hpp"
#include "math.hpp"
// for now only pass-through placeholder functions, // for now only pass-through placeholder functions,
// since we draw the whole map // since we draw the whole map
void Camera::Pan(const WorldPos &delta) { m_Pan += (delta / m_Zoom); }
void Camera::Pan(const WorldPos& delta) void Camera::Zoom(float delta) {
{
m_Pan += (delta / m_Zoom);
}
void Camera::Zoom(float delta)
{
constexpr float ZOOM_SCALE = 0.1f; constexpr float ZOOM_SCALE = 0.1f;
m_Zoom += delta * ZOOM_SCALE; m_Zoom += delta * ZOOM_SCALE;
LOG_DEBUG("Zoom: ", m_Zoom); LOG_DEBUG("Zoom: ", m_Zoom);
} }
WindowPos Camera::WorldToWindow(WorldPos world) const WindowPos Camera::WorldToWindow(WorldPos world) const {
{ const auto &v = world + m_Pan;
const auto& v = world + m_Pan;
return WindowPos{v[0], v[1]} * m_Zoom; return WindowPos{v[0], v[1]} * m_Zoom;
} }
WorldPos Camera::WindowToWorld(WindowPos window) const WorldPos Camera::WindowToWorld(WindowPos window) const {
{
window /= m_Zoom; window /= m_Zoom;
return WorldPos{window[0], window[1]} - m_Pan; return WorldPos{window[0], window[1]} - m_Pan;
} }
WindowSize Camera::WorldToWindowSize(WorldSize world) const {
WindowSize Camera::WorldToWindowSize(WorldSize world) const const auto &v = world;
{
const auto& v = world;
// no zoom yet, just pass-through // no zoom yet, just pass-through
return WindowSize{v[0], v[1]} * m_Zoom; return WindowSize{v[0], v[1]} * m_Zoom;
} }
WorldSize Camera::WindowToWorldSize(WindowSize window) const WorldSize Camera::WindowToWorldSize(WindowSize window) const {
{ window /= m_Zoom;
window /= m_Zoom; return WorldSize{window[0], window[1]};
return WorldSize{window[0], window[1]};
} }

View File

@@ -2,28 +2,27 @@
#include "math.hpp" #include "math.hpp"
class Camera class Camera {
{
public: public:
void Pan(const WorldPos& delta); void Pan(const WorldPos &delta);
void Zoom(float delta); void Zoom(float delta);
WorldPos GetPan() const { return m_Pan; } WorldPos GetPan() const { return m_Pan; }
float GetZoom() const { return m_Zoom; } float GetZoom() const { return m_Zoom; }
WindowPos WorldToWindow(WorldPos) const; WindowPos WorldToWindow(WorldPos) const;
WorldPos WindowToWorld(WindowPos) const; WorldPos WindowToWorld(WindowPos) const;
WindowSize WorldToWindowSize(WorldSize) const; WindowSize WorldToWindowSize(WorldSize) const;
WorldSize WindowToWorldSize(WindowSize) const; WorldSize WindowToWorldSize(WindowSize) const;
template <typename T> template <typename T>
requires std::floating_point<T> requires std::floating_point<T>
T WindowToWorldSize(T window_size) const { T WindowToWorldSize(T window_size) const {
return window_size / static_cast<T>(m_Zoom); return window_size / static_cast<T>(m_Zoom);
} }
template <typename T> template <typename T>
requires std::floating_point<T> requires std::floating_point<T>
T WorldToWindowSize(T world_size) const { T WorldToWindowSize(T world_size) const {
return world_size * static_cast<T>(m_Zoom); return world_size * static_cast<T>(m_Zoom);
} }

View File

@@ -30,7 +30,8 @@ void Entity::ZeroActualVelocityInDirection(WorldPos direction) {
// q1 * e1 + q2 * e2 = v, from this follows: // q1 * e1 + q2 * e2 = v, from this follows:
auto &v = GetActualVelocity(); auto &v = GetActualVelocity();
float q2 = (v.y() * e1.x() - v.x() * e1.y()) / (e2.y() * e1.x() - e2.x() * e1.y()); float q2 =
(v.y() * e1.x() - v.x() * e1.y()) / (e2.y() * e1.x() - e2.x() * e1.y());
float q1 = (v.x() - q2 * e2.x()) / e1.x(); float q1 = (v.x() - q2 * e2.x()) / e1.x();
// We then zero-out the q1, but only if it's positive - meaning // We then zero-out the q1, but only if it's positive - meaning
@@ -46,9 +47,8 @@ void Entity::Update(float time_delta) {
m_Position += m_ActualVelocity * time_delta; m_Position += m_ActualVelocity * time_delta;
} }
std::optional<WorldPos> Entity::GetMoveTarget() std::optional<WorldPos> Entity::GetMoveTarget() {
{ auto &path = GetPath();
auto& path = GetPath();
if (path.empty()) { if (path.empty()) {
return {}; return {};
} }
@@ -61,27 +61,24 @@ std::optional<WorldPos> Entity::GetMoveTarget()
return next_pos; return next_pos;
} }
// target reached, pop it // target reached, pop it
//m_MoveQueue.pop(); // m_MoveQueue.pop();
path.erase(path.begin()); path.erase(path.begin());
// return nothing - if there's next point in the queue, // return nothing - if there's next point in the queue,
// we'll get it in the next iteration // we'll get it in the next iteration
return {}; return {};
} }
bool Entity::CollidesWith(const Entity& other) const bool Entity::CollidesWith(const Entity &other) const {
{ const auto &A = *this;
const auto& A = *this; const auto &B = other;
const auto& B = other;
auto position_A = A.GetPosition(); auto position_A = A.GetPosition();
auto position_B = B.GetPosition(); auto position_B = B.GetPosition();
auto distance_sq = position_A.DistanceSquared(position_B); auto distance_sq = position_A.DistanceSquared(position_B);
auto collision_distance_sq = auto collision_distance_sq =
A.GetCollisionRadiusSquared() + A.GetCollisionRadiusSquared() + B.GetCollisionRadiusSquared() +
B.GetCollisionRadiusSquared() +
2 * A.GetCollisionRadius() * B.GetCollisionRadius(); 2 * A.GetCollisionRadius() * B.GetCollisionRadius();
if (distance_sq < collision_distance_sq) if (distance_sq < collision_distance_sq) {
{
return true; return true;
} }
return false; return false;

View File

@@ -4,13 +4,13 @@
#include <cstdint> #include <cstdint>
#include <iostream> #include <iostream>
#include <memory> #include <memory>
#include <string_view>
#include <optional> #include <optional>
#include <string_view>
#include "log.hpp" #include "log.hpp"
#include "math.hpp" #include "math.hpp"
#include "sprite.hpp"
#include "pathfinder/base.hpp" #include "pathfinder/base.hpp"
#include "sprite.hpp"
class Entity { class Entity {
public: public:
@@ -58,12 +58,12 @@ public:
void ZeroActualVelocityInDirection(WorldPos direction); void ZeroActualVelocityInDirection(WorldPos direction);
const pathfinder::Path& GetPath() const { return m_Path; } const pathfinder::Path &GetPath() const { return m_Path; }
pathfinder::Path& GetPath() { return m_Path; } pathfinder::Path &GetPath() { return m_Path; }
void SetPath(pathfinder::Path& path) { m_Path = path; } void SetPath(pathfinder::Path &path) { m_Path = path; }
std::optional<WorldPos> GetMoveTarget(); std::optional<WorldPos> GetMoveTarget();
bool CollidesWith(const Entity& other) const; bool CollidesWith(const Entity &other) const;
bool IsCollisionBoxVisible() const { return m_CollisionBoxVisible; } bool IsCollisionBoxVisible() const { return m_CollisionBoxVisible; }

View File

@@ -21,18 +21,17 @@ void GameLoop::Draw() {
TilePos{static_cast<int32_t>(row), static_cast<int32_t>(col)})); TilePos{static_cast<int32_t>(row), static_cast<int32_t>(col)}));
const auto &size = camera.WorldToWindowSize(map.GetTileSize()); const auto &size = camera.WorldToWindowSize(map.GetTileSize());
// LOG_DEBUG("Drawing rect (", row, ", ", col, ")"); // LOG_DEBUG("Drawing rect (", row, ", ", col, ")");
m_Window->DrawFilledRect(position, size, tiles[row][col]->R, tiles[row][col]->G, m_Window->DrawFilledRect(position, size, tiles[row][col]->R,
tiles[row][col]->B, tiles[row][col]->A); tiles[row][col]->G, tiles[row][col]->B,
tiles[row][col]->A);
} }
} }
// draw the path, if it exists // draw the path, if it exists
for (const auto& entity : m_Game->GetEntities()) for (const auto &entity : m_Game->GetEntities()) {
{
WorldPos start_pos = entity->GetPosition(); WorldPos start_pos = entity->GetPosition();
for (const auto &next_pos : entity->GetPath()) for (const auto &next_pos : entity->GetPath()) {
{
const auto &camera = m_Game->GetCamera(); const auto &camera = m_Game->GetCamera();
m_Window->DrawLine(camera.WorldToWindow(start_pos), m_Window->DrawLine(camera.WorldToWindow(start_pos),
camera.WorldToWindow(next_pos)); camera.WorldToWindow(next_pos));
@@ -44,29 +43,24 @@ void GameLoop::Draw() {
for (auto &entity : m_Game->GetEntities()) { for (auto &entity : m_Game->GetEntities()) {
const auto &camera = m_Game->GetCamera(); const auto &camera = m_Game->GetCamera();
auto entity_pos = camera.WorldToWindow(entity->GetPosition()); auto entity_pos = camera.WorldToWindow(entity->GetPosition());
m_Window->DrawSprite(entity_pos, m_Window->DrawSprite(entity_pos, entity->GetSprite(), camera.GetZoom());
entity->GetSprite(), if (entity->IsCollisionBoxVisible()) {
camera.GetZoom()); float collision_radius =
if (entity->IsCollisionBoxVisible()) camera.WorldToWindowSize(entity->GetCollisionRadius());
{
float collision_radius = camera.WorldToWindowSize(entity->GetCollisionRadius());
m_Window->DrawCircle(entity_pos, collision_radius, 255, 0, 0); m_Window->DrawCircle(entity_pos, collision_radius, 255, 0, 0);
} }
if (entity->IsSelected()) if (entity->IsSelected()) {
{ float collision_radius =
float collision_radius = camera.WorldToWindowSize(entity->GetCollisionRadius()); camera.WorldToWindowSize(entity->GetCollisionRadius());
m_Window->DrawCircle(entity_pos, collision_radius, 0, 255, 0); m_Window->DrawCircle(entity_pos, collision_radius, 0, 255, 0);
} }
} }
// draw the selection box, if present // draw the selection box, if present
if (m_Game->IsSelectionBoxActive()) if (m_Game->IsSelectionBoxActive()) {
{ const auto &[corner_pos, size] = m_Game->GetSelectionBoxPosSize();
const auto& [corner_pos, size] = m_Game->GetSelectionBoxPosSize();
m_Window->DrawRect(corner_pos, size, 200, 20, 20); m_Window->DrawRect(corner_pos, size, 200, 20, 20);
} }
} }
// TODO rethink coupling and dependencies in the game loop class // TODO rethink coupling and dependencies in the game loop class

View File

@@ -3,24 +3,22 @@
#include <memory> #include <memory>
#include "pathfindingdemo.hpp" #include "pathfindingdemo.hpp"
#include "window.hpp"
#include "user_input.hpp" #include "user_input.hpp"
#include "window.hpp"
class GameLoop { class GameLoop {
public: public:
GameLoop() = default; GameLoop() = default;
~GameLoop() = default; ~GameLoop() = default;
GameLoop(const GameLoop&) = delete; GameLoop(const GameLoop &) = delete;
GameLoop(GameLoop&&) = delete; GameLoop(GameLoop &&) = delete;
GameLoop& operator=(const GameLoop&) = delete; GameLoop &operator=(const GameLoop &) = delete;
GameLoop& operator=(GameLoop&&) = delete; GameLoop &operator=(GameLoop &&) = delete;
void Run(); void Run();
void SetGame(std::unique_ptr<PathFindingDemo> x) { void SetGame(std::unique_ptr<PathFindingDemo> x) { m_Game = std::move(x); }
m_Game = std::move(x);
}
void SetWindow(std::unique_ptr<Window> x) { m_Window = std::move(x); } void SetWindow(std::unique_ptr<Window> x) { m_Window = std::move(x); }
void SetUserInput(std::unique_ptr<UserInput> x) { void SetUserInput(std::unique_ptr<UserInput> x) {
m_UserInput = std::move(x); m_UserInput = std::move(x);

View File

@@ -3,11 +3,11 @@
#include <iostream> #include <iostream>
#if defined(__GNUC__) || defined(__clang__) #if defined(__GNUC__) || defined(__clang__)
# define PRETTY_FUNC __PRETTY_FUNCTION__ #define PRETTY_FUNC __PRETTY_FUNCTION__
#elif defined(_MSC_VER) #elif defined(_MSC_VER)
# define PRETTY_FUNC __FUNCTION__ #define PRETTY_FUNC __FUNCTION__
#else #else
# define PRETTY_FUNC __func__ #define PRETTY_FUNC __func__
#endif #endif
#define LOG_CRITICAL(...) Log::critical(PRETTY_FUNC, ": ", __VA_ARGS__) #define LOG_CRITICAL(...) Log::critical(PRETTY_FUNC, ": ", __VA_ARGS__)

View File

@@ -11,21 +11,22 @@ Map::Map(int rows, int cols) : m_Cols(cols), m_Rows(rows) {
for (size_t row = 0; row < m_Rows; row++) { for (size_t row = 0; row < m_Rows; row++) {
m_Tiles.push_back(std::vector<const Tile *>{}); m_Tiles.push_back(std::vector<const Tile *>{});
for (size_t col = 0; col < m_Cols; col++) { for (size_t col = 0; col < m_Cols; col++) {
m_Tiles[row].push_back(&tile_types.at(TileType::GRASS)); m_Tiles[row].push_back(&tile_types.at(TileType::GRASS));
} }
} }
} }
WorldPos Map::TileToWorld(TilePos p) const { WorldPos Map::TileToWorld(TilePos p) const {
return WorldPos{(p.x() + 0.5f) * TILE_SIZE, (p.y() + 0.5f) * TILE_SIZE}; return WorldPos{(p.x() + 0.5f) * TILE_SIZE, (p.y() + 0.5f) * TILE_SIZE};
} }
WorldPos Map::TileEdgeToWorld(TilePos p) const { WorldPos Map::TileEdgeToWorld(TilePos p) const {
return WorldPos{p.x() * TILE_SIZE, p.y() * TILE_SIZE}; return WorldPos{p.x() * TILE_SIZE, p.y() * TILE_SIZE};
} }
TilePos Map::WorldToTile(WorldPos p) const { TilePos Map::WorldToTile(WorldPos p) const {
return TilePos{static_cast<int32_t>(p.x() / TILE_SIZE), static_cast<int32_t>(p.y() / TILE_SIZE)}; return TilePos{static_cast<int32_t>(p.x() / TILE_SIZE),
static_cast<int32_t>(p.y() / TILE_SIZE)};
} }
WorldSize Map::GetTileSize() const { return WorldSize{TILE_SIZE, TILE_SIZE}; } WorldSize Map::GetTileSize() const { return WorldSize{TILE_SIZE, TILE_SIZE}; }
@@ -51,40 +52,38 @@ bool Map::IsTilePosValid(TilePos p) const {
return row < m_Tiles.size() && col < m_Tiles[0].size(); return row < m_Tiles.size() && col < m_Tiles[0].size();
} }
std::vector<TilePos> Map::GetNeighbors(TilePos center) const {
std::vector<TilePos> Map::GetNeighbors(TilePos center) const
{
std::vector<TilePos> neighbours; std::vector<TilePos> neighbours;
neighbours.reserve(4); neighbours.reserve(4);
std::array<TilePos, 4> candidates = { std::array<TilePos, 4> candidates = {
center + TilePos{ 1, 0}, center + TilePos{1, 0},
center + TilePos{-1, 0}, center + TilePos{-1, 0},
center + TilePos{ 0, 1}, center + TilePos{0, 1},
center + TilePos{ 0, -1}, center + TilePos{0, -1},
}; };
for (const auto& c : candidates) { for (const auto &c : candidates) {
if (IsTilePosValid(c)) if (IsTilePosValid(c))
neighbours.push_back(c); neighbours.push_back(c);
} }
return neighbours; return neighbours;
} }
void Map::PaintCircle(TilePos center, unsigned radius, TileType tile_type) {
void Map::PaintCircle(TilePos center, unsigned radius, TileType tile_type)
{
// get rectangle that wraps the circle // get rectangle that wraps the circle
TilePos corner1 = TilePos{center.x() - static_cast<int32_t>(radius), center.y() - static_cast<int32_t>(radius)}; TilePos corner1 = TilePos{center.x() - static_cast<int32_t>(radius),
TilePos corner2 = TilePos{center.x() + static_cast<int32_t>(radius), center.y() + static_cast<int32_t>(radius)}; center.y() - static_cast<int32_t>(radius)};
TilePos corner2 = TilePos{center.x() + static_cast<int32_t>(radius),
center.y() + static_cast<int32_t>(radius)};
// iterate through all valid points, setting the type // iterate through all valid points, setting the type
const unsigned radius_squared = radius * radius; const unsigned radius_squared = radius * radius;
for (int x = corner1.x(); x < corner2.x(); x++) { for (int x = corner1.x(); x < corner2.x(); x++) {
for (int y = corner1.y(); y < corner2.y(); y++) { for (int y = corner1.y(); y < corner2.y(); y++) {
TilePos current_tile = {x, y}; TilePos current_tile = {x, y};
unsigned distance_squared = static_cast<unsigned>(center.DistanceTo(current_tile) * center.DistanceTo(current_tile)); unsigned distance_squared = static_cast<unsigned>(
if (IsTilePosValid(current_tile) && distance_squared < radius_squared) center.DistanceTo(current_tile) * center.DistanceTo(current_tile));
{ if (IsTilePosValid(current_tile) && distance_squared < radius_squared) {
// y is row, x is col // y is row, x is col
m_Tiles[y][x] = &tile_types.at(tile_type); m_Tiles[y][x] = &tile_types.at(tile_type);
} }
@@ -92,19 +91,24 @@ void Map::PaintCircle(TilePos center, unsigned radius, TileType tile_type)
} }
} }
void Map::PaintLine(TilePos start_tile, TilePos stop_tile, double width, TileType tile_type) void Map::PaintLine(TilePos start_tile, TilePos stop_tile, double width,
{ TileType tile_type) {
const vec<double, 2> start{static_cast<double>(start_tile.x()), static_cast<double>(start_tile.y())}; const vec<double, 2> start{static_cast<double>(start_tile.x()),
const vec<double, 2> stop{static_cast<double>(stop_tile.x()), static_cast<double>(stop_tile.y())}; static_cast<double>(start_tile.y())};
const vec<double, 2> stop{static_cast<double>(stop_tile.x()),
static_cast<double>(stop_tile.y())};
const double line_length = start.DistanceTo(stop); const double line_length = start.DistanceTo(stop);
const vec<double, 2> step = (stop - start) / line_length; const vec<double, 2> step = (stop - start) / line_length;
const vec<double, 2> ortho = step.GetOrthogonal(); const vec<double, 2> ortho = step.GetOrthogonal();
LOG_DEBUG("step = ", step, " ortho = ", ortho); LOG_DEBUG("step = ", step, " ortho = ", ortho);
// NOLINTNEXTLINE(clang-analyzer-security.FloatLoopCounter)
for (double t = 0; t < line_length; t += 1.0) { for (double t = 0; t < line_length; t += 1.0) {
// NOLINTNEXTLINE(clang-analyzer-security.FloatLoopCounter)
for (double ortho_t = 0; ortho_t < width; ortho_t += 0.1) { for (double ortho_t = 0; ortho_t < width; ortho_t += 0.1) {
auto tile_pos = start + step * t + ortho * ortho_t; auto tile_pos = start + step * t + ortho * ortho_t;
TilePos tile_pos_int{static_cast<int32_t>(tile_pos.x()), static_cast<int32_t>(tile_pos.y())}; TilePos tile_pos_int{static_cast<int32_t>(tile_pos.x()),
static_cast<int32_t>(tile_pos.y())};
if (IsTilePosValid(tile_pos_int)) { if (IsTilePosValid(tile_pos_int)) {
size_t row = static_cast<size_t>(tile_pos.x()); size_t row = static_cast<size_t>(tile_pos.x());
size_t col = static_cast<size_t>(tile_pos.y()); size_t col = static_cast<size_t>(tile_pos.y());
@@ -114,15 +118,14 @@ void Map::PaintLine(TilePos start_tile, TilePos stop_tile, double width, TileTyp
} }
} }
void Map::PaintRectangle(TilePos first_corner, TilePos second_corner,
void Map::PaintRectangle(TilePos first_corner, TilePos second_corner, TileType tile_type) TileType tile_type) {
{
std::initializer_list<int> xvals = {first_corner.x(), second_corner.x()}; std::initializer_list<int> xvals = {first_corner.x(), second_corner.x()};
std::initializer_list<int> yvals = {first_corner.y(), second_corner.y()}; std::initializer_list<int> yvals = {first_corner.y(), second_corner.y()};
for (int x = std::min(xvals); x < std::max(xvals); x++) { for (int x = std::min(xvals); x < std::max(xvals); x++) {
for (int y = std::min(yvals); y < std::max(yvals); y++) { for (int y = std::min(yvals); y < std::max(yvals); y++) {
TilePos tile_pos{x,y}; TilePos tile_pos{x, y};
LOG_DEBUG("tile_pos = ", tile_pos); LOG_DEBUG("tile_pos = ", tile_pos);
if (IsTilePosValid(tile_pos)) { if (IsTilePosValid(tile_pos)) {
size_t row = static_cast<size_t>(tile_pos.x()); size_t row = static_cast<size_t>(tile_pos.x());
size_t col = static_cast<size_t>(tile_pos.y()); size_t col = static_cast<size_t>(tile_pos.y());

View File

@@ -14,10 +14,10 @@ public:
Map(int rows, int cols); Map(int rows, int cols);
Map() : Map(0, 0) {} Map() : Map(0, 0) {}
Map(const Map&) = delete; Map(const Map &) = delete;
Map(Map&&) = delete; Map(Map &&) = delete;
Map& operator=(const Map&) = delete; Map &operator=(const Map &) = delete;
Map& operator=(Map&&) = delete; Map &operator=(Map &&) = delete;
const TileGrid &GetMapTiles() const { return m_Tiles; } const TileGrid &GetMapTiles() const { return m_Tiles; }
@@ -25,7 +25,7 @@ public:
WorldPos TileToWorld(TilePos p) const; WorldPos TileToWorld(TilePos p) const;
WorldPos TileEdgeToWorld(TilePos p) const; WorldPos TileEdgeToWorld(TilePos p) const;
TilePos WorldToTile(WorldPos p) const; TilePos WorldToTile(WorldPos p) const;
WorldSize GetTileSize() const; WorldSize GetTileSize() const;
const Tile *GetTileAt(TilePos p) const; const Tile *GetTileAt(TilePos p) const;
const Tile *GetTileAt(WorldPos p) const; const Tile *GetTileAt(WorldPos p) const;
@@ -35,7 +35,8 @@ public:
// methods for drawing on the map // methods for drawing on the map
void PaintCircle(TilePos center, unsigned radius, TileType tile_type); void PaintCircle(TilePos center, unsigned radius, TileType tile_type);
void PaintLine(TilePos start, TilePos stop, double width, TileType tile_type); void PaintLine(TilePos start, TilePos stop, double width, TileType tile_type);
void PaintRectangle(TilePos first_corner, TilePos second_corner, TileType tile_type); void PaintRectangle(TilePos first_corner, TilePos second_corner,
TileType tile_type);
std::vector<TilePos> GetNeighbors(TilePos center) const; std::vector<TilePos> GetNeighbors(TilePos center) const;
float GetCost(TilePos pos) const { return GetTileAt(pos)->cost; } float GetCost(TilePos pos) const { return GetTileAt(pos)->cost; }

View File

@@ -4,12 +4,12 @@
#include <cassert> #include <cassert>
#include <cmath> #include <cmath>
#include <concepts> #include <concepts>
#include <functional>
#include <initializer_list> #include <initializer_list>
#include <iostream> #include <iostream>
#include <numeric> #include <numeric>
#include <ranges> #include <ranges>
#include <utility> #include <utility>
#include <functional>
#ifdef _WIN32 #ifdef _WIN32
#include <numbers> #include <numbers>
@@ -37,6 +37,10 @@ static inline bool equalEpsilon(const T &a, const T &b) {
struct Any {}; struct Any {};
template <typename T, size_t N, typename Tag = Any> class vec { template <typename T, size_t N, typename Tag = Any> class vec {
// Friend declaration for move constructor from different tag types
template <typename U, size_t M, typename OtherTag> friend class vec;
public: public:
vec() : m_Array{} {} vec() : m_Array{} {}
@@ -46,6 +50,9 @@ public:
vec(std::array<T, N> array) : m_Array{array} {} vec(std::array<T, N> array) : m_Array{array} {}
template <typename OtherTag>
vec(vec<T, N, OtherTag> &&other) : m_Array{std::move(other.m_Array)} {}
// //
// Access to elements & data // Access to elements & data
// //
@@ -69,20 +76,20 @@ public:
return os; return os;
} }
std::array<T,N>& Data() { return m_Array; } std::array<T, N> &Data() { return m_Array; }
// //
// binary operators // binary operators
// //
friend bool operator==(const vec &a, const vec &b) friend bool operator==(const vec &a, const vec &b)
requires (std::is_integral_v<T>) requires(std::is_integral_v<T>)
{ {
return std::ranges::equal(a.m_Array, b.m_Array); return std::ranges::equal(a.m_Array, b.m_Array);
} }
friend bool operator==(const vec &a, const vec &b) friend bool operator==(const vec &a, const vec &b)
requires (std::is_floating_point_v<T>) requires(std::is_floating_point_v<T>)
{ {
for (const auto &[u, v] : std::views::zip(a.m_Array, b.m_Array)) { for (const auto &[u, v] : std::views::zip(a.m_Array, b.m_Array)) {
if (!equalEpsilon(u, v)) { if (!equalEpsilon(u, v)) {
@@ -101,6 +108,13 @@ public:
return c; return c;
} }
friend vec operator+(const vec &a, T b) {
vec<T, N, Tag> c;
std::ranges::transform(a.m_Array, std::views::repeat(b), c.m_Array.begin(),
std::plus{});
return c;
}
friend vec operator-(const vec &a, const vec &b) { friend vec operator-(const vec &a, const vec &b) {
vec<T, N, Tag> c; vec<T, N, Tag> c;
std::ranges::transform(a.m_Array, b.m_Array, c.m_Array.begin(), std::ranges::transform(a.m_Array, b.m_Array, c.m_Array.begin(),
@@ -108,6 +122,13 @@ public:
return c; return c;
} }
friend vec operator-(const vec &a, T b) {
vec<T, N, Tag> c;
std::ranges::transform(a.m_Array, std::views::repeat(b), c.m_Array.begin(),
std::minus{});
return c;
}
friend vec operator*(const vec &a, const T &scalar) { friend vec operator*(const vec &a, const T &scalar) {
vec<T, N, Tag> c; vec<T, N, Tag> c;
std::ranges::transform(a.m_Array, std::views::repeat(scalar), std::ranges::transform(a.m_Array, std::views::repeat(scalar),
@@ -124,6 +145,13 @@ public:
return c; return c;
} }
friend vec operator/(const vec &a, const vec &b) {
vec<T, N, Tag> c;
std::ranges::transform(a.m_Array, b.m_Array, c.m_Array.begin(),
std::divides{});
return c;
}
// //
// compound-assignment operators // compound-assignment operators
// //
@@ -142,12 +170,12 @@ public:
return a; return a;
} }
vec& operator/=(float scalar) vec &operator/=(float scalar) {
{ vec &a = *this;
vec& a = *this;
auto b = std::views::repeat(scalar); auto b = std::views::repeat(scalar);
std::ranges::transform(a.m_Array, b, a.m_Array.begin(), std::divides{}); std::ranges::transform(a.m_Array, b, a.m_Array.begin(), std::divides{});
// TODO check all of this, could be done better with views instead of ranges? // TODO check all of this, could be done better with views instead of
// ranges?
return a; return a;
} }
@@ -172,7 +200,6 @@ public:
return (a - b).LengthSquared(); return (a - b).LengthSquared();
} }
// //
// In-place vector operations // In-place vector operations
// //
@@ -206,16 +233,14 @@ public:
return tmp; return tmp;
} }
static T DotProduct(const vec& a, const vec& b) static T DotProduct(const vec &a, const vec &b) {
{ return std::inner_product(a.m_Array.begin(), a.m_Array.end(),
return std::inner_product( b.m_Array.begin(), T{}, std::plus{},
a.m_Array.begin(), a.m_Array.end(), b.m_Array.begin(), std::multiplies{});
T{}, std::plus{}, std::multiplies{});
} }
T DotProduct(const vec& b) const T DotProduct(const vec &b) const {
{ const auto &a = *this;
const auto& a = *this;
return DotProduct(a, b); return DotProduct(a, b);
} }
@@ -259,10 +284,27 @@ public:
return m_Array[2]; return m_Array[2];
} }
template <typename TargetTag> template <typename TargetTag> vec<T, N, TargetTag> ChangeTag() const & {
vec<T,N,TargetTag> ChangeTag() return vec<T, N, TargetTag>(m_Array);
}
template <typename TargetTag> vec<T, N, TargetTag> ChangeTag() && {
return vec<T, N, TargetTag>(std::move(*this));
}
// Structured binding support for N == 2
template <size_t I>
const T &get() const
requires(N == 2 && I < 2)
{ {
return vec<T,N,TargetTag>(m_Array); return m_Array[I];
}
template <size_t I>
T &get()
requires(N == 2 && I < 2)
{
return m_Array[I];
} }
private: private:
@@ -320,92 +362,101 @@ struct TilePosHash {
// //
// Collumn major square matrix // Collumn major square matrix
template <typename T, size_t N, typename Tag = Any> template <typename T, size_t N, typename Tag = Any> class Matrix {
class Matrix {
using vec_type = vec<T, N, Tag>; using vec_type = vec<T, N, Tag>;
public: public:
Matrix() = default; Matrix() = default;
// Initialization using flat array of N*N elements // Initialization using flat array of N*N elements
template <typename Tarr, size_t M> template <typename Tarr, size_t M>
requires (M == N*N && std::same_as<Tarr, T>) requires(M == N * N && std::same_as<Tarr, T>)
Matrix(std::array<Tarr,M> array) : m_Array{} Matrix(std::array<Tarr, M> array) : m_Array{} {
{ std::size_t idx = 0;
std::size_t idx = 0; for (auto col : array | std::views::chunk(N)) {
for (auto col : array | std::views::chunk(N)) std::ranges::copy(col, m_Array[idx++].Data().begin());
{
std::ranges::copy(col, m_Array[idx++].Data().begin());
}
} }
}
const vec_type& operator[](size_t index) const { return m_Array[index]; } const vec_type &operator[](size_t index) const { return m_Array[index]; }
vec_type& operator[](size_t index) { return m_Array[index]; } vec_type &operator[](size_t index) { return m_Array[index]; }
friend std::ostream &operator<<(std::ostream &os, const Matrix &obj) friend std::ostream &operator<<(std::ostream &os, const Matrix &obj) {
{ os << "( ";
os << "( "; for (const auto &element : obj.m_Array) {
for (const auto &element : obj.m_Array) { os << element << " ";
os << element << " ";
}
os << ")";
return os;
} }
os << ")";
return os;
}
friend Matrix operator+(const Matrix &A, const Matrix &B) {
Matrix C;
std::ranges::transform(A.m_Array, B.m_Array, C.m_Array.begin(),
std::plus{});
return C;
}
friend Matrix operator+(const Matrix& A, const Matrix& B) friend Matrix operator-(const Matrix &A, const Matrix &B) {
{ Matrix C;
Matrix C; std::ranges::transform(A.m_Array, B.m_Array, C.m_Array.begin(),
std::ranges::transform(A.m_Array, B.m_Array, C.m_Array.begin(), std::plus{}); std::minus{});
return C; return C;
}
friend Matrix operator*(const Matrix &A, const Matrix &B) {
Matrix C;
for (size_t i = 0; i < N; i++) {
for (size_t j = 0; j < N; j++) {
T sum = 0;
for (size_t k = 0; k < N; ++k)
sum += A[i][k] * B[k][j];
C[i][j] = sum;
}
} }
return C;
}
friend Matrix operator-(const Matrix& A, const Matrix& B) friend vec_type operator*(const Matrix &A, const vec_type &b) {
{ // we assume that b is row vector
Matrix C; vec_type c;
std::ranges::transform(A.m_Array, B.m_Array, C.m_Array.begin(), std::minus{}); for (size_t i = 0; i < N; i++) {
return C; c[i] = b.DotProduct(A[i]);
} }
return c;
}
friend Matrix operator*(const Matrix& A, const Matrix& B) static constexpr Matrix Eye() {
{ Matrix E;
Matrix C; for (size_t i = 0; i < N; i++) {
E[i][i] = T{1};
for (size_t i = 0; i < N; i++)
{
for (size_t j = 0; j < N; j++)
{
T sum = 0;
for (size_t k = 0; k < N; ++k) sum += A[i][k] * B[k][j];
C[i][j] = sum;
}
}
return C;
} }
return E;
friend vec_type operator*(const Matrix& A, const vec_type& b) }
{
// we assume that b is row vector
vec_type c;
for (size_t i = 0; i < N; i++)
{
c[i] = b.DotProduct(A[i]);
}
return c;
}
static constexpr Matrix Eye()
{
Matrix E;
for (size_t i = 0; i < N; i++)
{
E[i][i] = T{1};
}
return E;
}
private: private:
std::array<vec_type, N> m_Array; std::array<vec_type, N> m_Array;
}; };
// Structured binding support for vec<T, 2, Tag>
namespace std {
template <typename T, typename Tag>
struct tuple_size<vec<T, 2, Tag>> : integral_constant<size_t, 2> {};
template <size_t I, typename T, typename Tag>
struct tuple_element<I, vec<T, 2, Tag>> {
using type = T;
};
} // namespace std
// ADL-based get for structured bindings
template <size_t I, typename T, typename Tag>
const T &get(const vec<T, 2, Tag> &v) {
return v.template get<I>();
}
template <size_t I, typename T, typename Tag> T &get(vec<T, 2, Tag> &v) {
return v.template get<I>();
}

View File

@@ -1,5 +1,5 @@
#include <memory>
#include <cassert> #include <cassert>
#include <memory>
#include <queue> #include <queue>
#include "pathfinder/base.hpp" #include "pathfinder/base.hpp"
@@ -9,14 +9,15 @@
namespace pathfinder { namespace pathfinder {
PathFinderBase::PathFinderBase(const Map* map) : m_Map(map) {} PathFinderBase::PathFinderBase(const Map *map) : m_Map(map) {}
// LinearPathFinder also lives here, since it is too small to get it's // LinearPathFinder also lives here, since it is too small to get it's
// own implementation file // own implementation file
Path LinearPathFinder::CalculatePath(WorldPos, WorldPos end) // first argument (start pos) not used Path LinearPathFinder::CalculatePath(
WorldPos, WorldPos end) // first argument (start pos) not used
{ {
auto path = Path{end}; auto path = Path{end};
return path; return path;
} }
} // pathfinder namespace } // namespace pathfinder

View File

@@ -1,11 +1,11 @@
#pragma once #pragma once
#include <vector>
#include <memory> #include <memory>
#include <unordered_map> #include <unordered_map>
#include <vector>
#include "math.hpp"
#include "map.hpp" #include "map.hpp"
#include "math.hpp"
namespace pathfinder { namespace pathfinder {
@@ -21,32 +21,30 @@ enum class PathFinderType {
class PathFinderBase { class PathFinderBase {
public: public:
PathFinderBase(const Map* m); PathFinderBase(const Map *m);
~PathFinderBase() = default; virtual ~PathFinderBase() = default;
PathFinderBase(const PathFinderBase&) = delete; PathFinderBase(const PathFinderBase &) = delete;
PathFinderBase(PathFinderBase&&) = delete; PathFinderBase(PathFinderBase &&) = delete;
PathFinderBase& operator=(const PathFinderBase&) = delete; PathFinderBase &operator=(const PathFinderBase &) = delete;
PathFinderBase& operator=(PathFinderBase&&) = delete; PathFinderBase &operator=(PathFinderBase &&) = delete;
virtual const std::string_view& GetName() const = 0; virtual const std::string_view &GetName() const = 0;
virtual Path CalculatePath(WorldPos start, WorldPos end) = 0; virtual Path CalculatePath(WorldPos start, WorldPos end) = 0;
protected: protected:
const Map* m_Map; const Map *m_Map;
}; };
class LinearPathFinder final : public PathFinderBase {
class LinearPathFinder : public PathFinderBase {
public: public:
LinearPathFinder(const Map* m): PathFinderBase(m) {} LinearPathFinder(const Map *m) : PathFinderBase(m) {}
Path CalculatePath(WorldPos start, WorldPos end) override; Path CalculatePath(WorldPos start, WorldPos end) override;
const std::string_view& GetName() const override { return m_Name; } const std::string_view &GetName() const override { return m_Name; }
private: private:
const std::string_view m_Name = "Linear Path"; const std::string_view m_Name = "Linear Path";
}; };
} // pathfinder namespace } // namespace pathfinder

View File

@@ -7,60 +7,61 @@
#include "math.hpp" #include "math.hpp"
namespace pathfinder { namespace pathfinder {
Path BFS::CalculatePath(WorldPos start_world, WorldPos end_world) { Path BFS::CalculatePath(WorldPos start_world, WorldPos end_world) {
if (m_Map == nullptr) return {}; if (m_Map == nullptr)
return {};
const TilePos start = m_Map->WorldToTile(start_world); const TilePos start = m_Map->WorldToTile(start_world);
const TilePos end = m_Map->WorldToTile(end_world); const TilePos end = m_Map->WorldToTile(end_world);
if (!m_Map->IsTilePosValid(start) || !m_Map->IsTilePosValid(end)) if (!m_Map->IsTilePosValid(start) || !m_Map->IsTilePosValid(end))
return {}; return {};
if (start == end) { if (start == end) {
return {}; return {};
} }
// clear previous run // clear previous run
m_CameFrom.clear(); m_CameFrom.clear();
m_Distance.clear(); m_Distance.clear();
std::queue<TilePos> frontier; std::queue<TilePos> frontier;
frontier.push(start); frontier.push(start);
m_CameFrom[start] = start; m_CameFrom[start] = start;
m_Distance[start] = 0.0f; m_Distance[start] = 0.0f;
// ---------------- build flow-field ---------------- // ---------------- build flow-field ----------------
bool early_exit = false; bool early_exit = false;
while (!frontier.empty() && !early_exit) { while (!frontier.empty() && !early_exit) {
TilePos current = frontier.front(); TilePos current = frontier.front();
frontier.pop(); frontier.pop();
for (TilePos next : m_Map->GetNeighbors(current)) { for (TilePos next : m_Map->GetNeighbors(current)) {
if (m_CameFrom.find(next) == m_CameFrom.end()) { // not visited if (m_CameFrom.find(next) == m_CameFrom.end()) { // not visited
frontier.push(next); frontier.push(next);
m_Distance[next] = m_Distance[current] + 1.0f; m_Distance[next] = m_Distance[current] + 1.0f;
m_CameFrom[next] = current; m_CameFrom[next] = current;
if (next == end) { // early exit if (next == end) { // early exit
early_exit = true; early_exit = true;
break; break;
}
}
} }
}
} }
}
// --------------- reconstruct path ----------------- // --------------- reconstruct path -----------------
if (m_CameFrom.find(end) == m_CameFrom.end()) if (m_CameFrom.find(end) == m_CameFrom.end())
return {}; // end not reached return {}; // end not reached
Path path; Path path;
TilePos cur = end; TilePos cur = end;
path.push_back(m_Map->TileToWorld(cur));
while (cur != start) {
cur = m_CameFrom[cur];
path.push_back(m_Map->TileToWorld(cur)); path.push_back(m_Map->TileToWorld(cur));
while (cur != start) { }
cur = m_CameFrom[cur]; std::reverse(path.begin(), path.end());
path.push_back(m_Map->TileToWorld(cur)); return path;
}
std::reverse(path.begin(), path.end());
return path;
} }
} // pathfinder namespace } // namespace pathfinder

View File

@@ -8,13 +8,13 @@
#include "math.hpp" #include "math.hpp"
namespace pathfinder { namespace pathfinder {
class BFS: public PathFinderBase { class BFS final : public PathFinderBase {
public: public:
BFS(const Map* m): PathFinderBase(m) {} BFS(const Map *m) : PathFinderBase(m) {}
Path CalculatePath(WorldPos start, WorldPos end) override; Path CalculatePath(WorldPos start, WorldPos end) override;
const std::string_view& GetName() const override { return m_Name; } const std::string_view &GetName() const override { return m_Name; }
private: private:
const std::string_view m_Name = "Breadth First Search"; const std::string_view m_Name = "Breadth First Search";
@@ -22,4 +22,4 @@ private:
std::unordered_map<TilePos, TilePos, TilePosHash> m_CameFrom; std::unordered_map<TilePos, TilePos, TilePosHash> m_CameFrom;
}; };
} } // namespace pathfinder

View File

@@ -3,71 +3,69 @@
#include "dijkstra.hpp" #include "dijkstra.hpp"
#include "base.hpp" #include "base.hpp"
#include "utils.hpp"
#include "math.hpp"
#include "map.hpp" #include "map.hpp"
#include "math.hpp"
#include "utils.hpp"
namespace pathfinder { namespace pathfinder {
Path Dijkstra::CalculatePath(WorldPos start_world, WorldPos end_world) Path Dijkstra::CalculatePath(WorldPos start_world, WorldPos end_world) {
{
using QueueEntry = utils::QueueEntry; using QueueEntry = utils::QueueEntry;
if (!m_Map) return {}; if (!m_Map)
return {};
const TilePos start = m_Map->WorldToTile(start_world); const TilePos start = m_Map->WorldToTile(start_world);
const TilePos end = m_Map->WorldToTile(end_world); const TilePos end = m_Map->WorldToTile(end_world);
if (!m_Map->IsTilePosValid(start) || !m_Map->IsTilePosValid(end)) if (!m_Map->IsTilePosValid(start) || !m_Map->IsTilePosValid(end))
return {}; return {};
if (start == end) return {}; if (start == end)
return {};
// clear previous run // clear previous run
m_CameFrom.clear(); m_CameFrom.clear();
m_Cost.clear(); m_Cost.clear();
std::priority_queue<QueueEntry, std::vector<QueueEntry>, std::greater<>> frontier; std::priority_queue<QueueEntry, std::vector<QueueEntry>, std::greater<>>
frontier;
frontier.push({0.0f, start}); frontier.push({0.0f, start});
m_CameFrom[start] = start; // sentinel m_CameFrom[start] = start; // sentinel
m_Cost[start] = 0.0f; m_Cost[start] = 0.0f;
while (!frontier.empty()) while (!frontier.empty()) {
{ const QueueEntry current = frontier.top();
const QueueEntry current = frontier.top(); frontier.pop();
frontier.pop();
if (current.tile == end) // early exit if (current.tile == end) // early exit
break; break;
for (TilePos next : m_Map->GetNeighbors(current.tile)) for (TilePos next : m_Map->GetNeighbors(current.tile)) {
{ // cost of moving to neighbour (uniform 1.0 matches original BFS)
// cost of moving to neighbour (uniform 1.0 matches original BFS) const float newCost = m_Cost[current.tile] + m_Map->GetCost(next);
const float newCost = m_Cost[current.tile] + m_Map->GetCost(next);
if (!m_Cost.count(next) || newCost < m_Cost[next]) if (!m_Cost.count(next) || newCost < m_Cost[next]) {
{ m_Cost[next] = newCost;
m_Cost[next] = newCost; m_CameFrom[next] = current.tile;
m_CameFrom[next] = current.tile; frontier.push({newCost, next});
frontier.push({newCost, next});
}
} }
}
} }
// reconstruct path // reconstruct path
if (!m_CameFrom.count(end)) if (!m_CameFrom.count(end))
return {}; // goal never reached return {}; // goal never reached
Path path; Path path;
TilePos cur = end; TilePos cur = end;
path.push_back(m_Map->TileToWorld(cur)); path.push_back(m_Map->TileToWorld(cur));
while (cur != start) while (cur != start) {
{ cur = m_CameFrom[cur];
cur = m_CameFrom[cur]; path.push_back(m_Map->TileToWorld(cur));
path.push_back(m_Map->TileToWorld(cur));
} }
std::reverse(path.begin(), path.end()); std::reverse(path.begin(), path.end());
return path; return path;
} }
} // pathfinder namespace } // namespace pathfinder

View File

@@ -10,12 +10,12 @@
namespace pathfinder { namespace pathfinder {
class Dijkstra: public PathFinderBase { class Dijkstra final : public PathFinderBase {
public: public:
Dijkstra(const Map* m): PathFinderBase(m) {} Dijkstra(const Map *m) : PathFinderBase(m) {}
Path CalculatePath(WorldPos start, WorldPos end) override; Path CalculatePath(WorldPos start, WorldPos end) override;
const std::string_view& GetName() const override { return m_Name; } const std::string_view &GetName() const override { return m_Name; }
private: private:
const std::string_view m_Name = "Dijkstra's Algorithm"; const std::string_view m_Name = "Dijkstra's Algorithm";
@@ -23,4 +23,4 @@ private:
std::unordered_map<TilePos, TilePos, TilePosHash> m_CameFrom; std::unordered_map<TilePos, TilePos, TilePosHash> m_CameFrom;
}; };
} // pathfinder namespace } // namespace pathfinder

View File

@@ -3,69 +3,67 @@
#include "gbfs.hpp" #include "gbfs.hpp"
#include "base.hpp" #include "base.hpp"
#include "math.hpp"
#include "map.hpp" #include "map.hpp"
#include "math.hpp"
#include "pathfinder/utils.hpp" #include "pathfinder/utils.hpp"
namespace pathfinder { namespace pathfinder {
float GBFS::Heuristic(const TilePos& a, const TilePos& b) float GBFS::Heuristic(const TilePos &a, const TilePos &b) {
{ return static_cast<float>(std::abs(a.x() - b.x()) + std::abs(a.y() - b.y()));
return static_cast<float>(std::abs(a.x() - b.x()) + std::abs(a.y() - b.y()));
} }
Path GBFS::CalculatePath(WorldPos start_world, WorldPos end_world) Path GBFS::CalculatePath(WorldPos start_world, WorldPos end_world) {
{
using QueueEntry = pathfinder::utils::QueueEntry; using QueueEntry = pathfinder::utils::QueueEntry;
if (!m_Map) return {}; if (!m_Map)
return {};
const TilePos start = m_Map->WorldToTile(start_world); const TilePos start = m_Map->WorldToTile(start_world);
const TilePos end = m_Map->WorldToTile(end_world); const TilePos end = m_Map->WorldToTile(end_world);
if (!m_Map->IsTilePosValid(start) || !m_Map->IsTilePosValid(end)) if (!m_Map->IsTilePosValid(start) || !m_Map->IsTilePosValid(end))
return {}; return {};
if (start == end) return {}; if (start == end)
return {};
m_CameFrom.clear(); m_CameFrom.clear();
std::priority_queue<QueueEntry, std::vector<QueueEntry>, std::greater<>> frontier; std::priority_queue<QueueEntry, std::vector<QueueEntry>, std::greater<>>
frontier;
frontier.push({Heuristic(start, end), start}); frontier.push({Heuristic(start, end), start});
m_CameFrom[start] = start; // sentinel m_CameFrom[start] = start; // sentinel
while (!frontier.empty()) while (!frontier.empty()) {
{ const QueueEntry current = frontier.top();
const QueueEntry current = frontier.top(); frontier.pop();
frontier.pop();
if (current.tile == end) // early exit if (current.tile == end) // early exit
break; break;
for (TilePos next : m_Map->GetNeighbors(current.tile)) for (TilePos next : m_Map->GetNeighbors(current.tile)) {
if (!m_CameFrom.count(next)) // not visited
{ {
if (!m_CameFrom.count(next)) // not visited m_CameFrom[next] = current.tile;
{ frontier.push({Heuristic(end, next), next});
m_CameFrom[next] = current.tile;
frontier.push({Heuristic(end, next), next});
}
} }
}
} }
// reconstruct path // reconstruct path
if (!m_CameFrom.count(end)) if (!m_CameFrom.count(end))
return {}; // goal never reached return {}; // goal never reached
Path path; Path path;
TilePos cur = end; TilePos cur = end;
path.push_back(m_Map->TileToWorld(cur)); path.push_back(m_Map->TileToWorld(cur));
while (cur != start) while (cur != start) {
{ cur = m_CameFrom[cur];
cur = m_CameFrom[cur]; path.push_back(m_Map->TileToWorld(cur));
path.push_back(m_Map->TileToWorld(cur));
} }
std::reverse(path.begin(), path.end()); std::reverse(path.begin(), path.end());
return path; return path;
} }
} // pathfinder namespace } // namespace pathfinder

View File

@@ -10,17 +10,17 @@
namespace pathfinder { namespace pathfinder {
class GBFS: public PathFinderBase { class GBFS final : public PathFinderBase {
public: public:
GBFS(const Map* m): PathFinderBase(m) {} GBFS(const Map *m) : PathFinderBase(m) {}
Path CalculatePath(WorldPos start, WorldPos end) override; Path CalculatePath(WorldPos start, WorldPos end) override;
const std::string_view& GetName() const override { return m_Name; } const std::string_view &GetName() const override { return m_Name; }
private: private:
static float Heuristic(const TilePos& a, const TilePos& b); static float Heuristic(const TilePos &a, const TilePos &b);
const std::string_view m_Name = "Greedy Best First Search"; const std::string_view m_Name = "Greedy Best First Search";
std::unordered_map<TilePos, TilePos, TilePosHash> m_CameFrom; std::unordered_map<TilePos, TilePos, TilePosHash> m_CameFrom;
}; };
} // pathfinder namespace } // namespace pathfinder

View File

@@ -3,9 +3,9 @@
#include "utils.hpp" #include "utils.hpp"
#include "base.hpp" #include "base.hpp"
#include "log.hpp"
#include "map.hpp" #include "map.hpp"
#include "math.hpp" #include "math.hpp"
#include "log.hpp"
#include "pathfinder/bfs.hpp" #include "pathfinder/bfs.hpp"
#include "pathfinder/dijkstra.hpp" #include "pathfinder/dijkstra.hpp"
#include "pathfinder/gbfs.hpp" #include "pathfinder/gbfs.hpp"
@@ -13,23 +13,23 @@
namespace pathfinder { namespace pathfinder {
namespace utils { namespace utils {
std::unique_ptr<PathFinderBase> create(PathFinderType type, const Map* map) { std::unique_ptr<PathFinderBase> create(PathFinderType type, const Map *map) {
using namespace pathfinder; using namespace pathfinder;
switch (type) { switch (type) {
case PathFinderType::LINEAR: case PathFinderType::LINEAR:
return std::move(std::make_unique<LinearPathFinder>(map)); return std::make_unique<LinearPathFinder>(map);
case PathFinderType::BFS: case PathFinderType::BFS:
return std::move(std::make_unique<BFS>(map)); return std::make_unique<BFS>(map);
case PathFinderType::DIJKSTRA: case PathFinderType::DIJKSTRA:
return std::move(std::make_unique<Dijkstra>(map)); return std::make_unique<Dijkstra>(map);
case PathFinderType::GBFS: case PathFinderType::GBFS:
return std::move(std::make_unique<GBFS>(map)); return std::make_unique<GBFS>(map);
case PathFinderType::COUNT: case PathFinderType::COUNT:
LOG_WARNING("Incorrect pathfinder type"); LOG_WARNING("Incorrect pathfinder type");
return nullptr; return nullptr;
}; };
return nullptr; return nullptr;
} }
} // utils namespace } // namespace utils
} // pathfinding namespace } // namespace pathfinder

View File

@@ -10,16 +10,16 @@
namespace pathfinder { namespace pathfinder {
namespace utils { namespace utils {
struct QueueEntry struct QueueEntry {
{ float cost;
float cost; TilePos tile;
TilePos tile;
// min-heap -> smallest cost on top // min-heap -> smallest cost on top
bool operator>(const QueueEntry& o) const noexcept { return cost > o.cost; } bool operator>(const QueueEntry &o) const noexcept { return cost > o.cost; }
}; };
std::unique_ptr<pathfinder::PathFinderBase> create(pathfinder::PathFinderType type, const Map* map); std::unique_ptr<pathfinder::PathFinderBase>
create(pathfinder::PathFinderType type, const Map *map);
} // utils namespace } // namespace utils
} // pathfinding namespace } // namespace pathfinder

View File

@@ -8,17 +8,16 @@
#include "entities.hpp" #include "entities.hpp"
#include "log.hpp" #include "log.hpp"
#include "map.hpp" #include "map.hpp"
#include "user_input.hpp"
#include "pathfinder/base.hpp" #include "pathfinder/base.hpp"
#include "pathfinder/utils.hpp" #include "pathfinder/utils.hpp"
#include "tile.hpp" #include "tile.hpp"
#include "user_input.hpp"
PathFindingDemo::PathFindingDemo(int width, int height) : PathFindingDemo::PathFindingDemo(int width, int height) : m_Map(width, height) {
m_Map(width, height)
{
LOG_DEBUG("."); LOG_DEBUG(".");
// set default pathfinder method // set default pathfinder method
m_PathFinder = pathfinder::utils::create(pathfinder::PathFinderType::DIJKSTRA, (const Map*)&m_Map); m_PathFinder = pathfinder::utils::create(pathfinder::PathFinderType::DIJKSTRA,
(const Map *)&m_Map);
} }
PathFindingDemo::~PathFindingDemo() { LOG_DEBUG("."); } PathFindingDemo::~PathFindingDemo() { LOG_DEBUG("."); }
@@ -33,29 +32,29 @@ void PathFindingDemo::CreateMap() {
m_Map.PaintCircle(TilePos{50, 50}, 10, TileType::WATER); m_Map.PaintCircle(TilePos{50, 50}, 10, TileType::WATER);
m_Map.PaintCircle(TilePos{75, 100}, 50, TileType::WATER); m_Map.PaintCircle(TilePos{75, 100}, 50, TileType::WATER);
// river // river
m_Map.PaintLine(TilePos{0,0}, TilePos{100,100}, 3.0, TileType::WATER); m_Map.PaintLine(TilePos{0, 0}, TilePos{100, 100}, 3.0, TileType::WATER);
// road // road
m_Map.PaintLine(TilePos{17,6}, TilePos{100,6}, 5.0, TileType::ROAD); m_Map.PaintLine(TilePos{17, 6}, TilePos{100, 6}, 5.0, TileType::ROAD);
m_Map.PaintLine(TilePos{10,17}, TilePos{10,100}, 5.0, TileType::ROAD); m_Map.PaintLine(TilePos{10, 17}, TilePos{10, 100}, 5.0, TileType::ROAD);
m_Map.PaintLine(TilePos{20,10}, TilePos{10,20}, 5.0, TileType::ROAD); m_Map.PaintLine(TilePos{20, 10}, TilePos{10, 20}, 5.0, TileType::ROAD);
// bridges // bridges
m_Map.PaintLine(TilePos{50,75}, TilePos{70,75}, 5.0, TileType::WOOD); m_Map.PaintLine(TilePos{50, 75}, TilePos{70, 75}, 5.0, TileType::WOOD);
m_Map.PaintLine(TilePos{95,26}, TilePos{95,60}, 5.0, TileType::WOOD); m_Map.PaintLine(TilePos{95, 26}, TilePos{95, 60}, 5.0, TileType::WOOD);
// island // island
m_Map.PaintRectangle(TilePos{70, 60}, TilePos{100,100}, TileType::GRASS); m_Map.PaintRectangle(TilePos{70, 60}, TilePos{100, 100}, TileType::GRASS);
// walls // walls
m_Map.PaintLine(TilePos{71,60}, TilePos{90,60}, 1.0, TileType::WALL); m_Map.PaintLine(TilePos{71, 60}, TilePos{90, 60}, 1.0, TileType::WALL);
m_Map.PaintLine(TilePos{77,67}, TilePos{100,67}, 1.0, TileType::WALL); m_Map.PaintLine(TilePos{77, 67}, TilePos{100, 67}, 1.0, TileType::WALL);
m_Map.PaintLine(TilePos{71,60}, TilePos{71,75}, 1.0, TileType::WALL); m_Map.PaintLine(TilePos{71, 60}, TilePos{71, 75}, 1.0, TileType::WALL);
m_Map.PaintLine(TilePos{72,73}, TilePos{95,73}, 1.0, TileType::WALL); m_Map.PaintLine(TilePos{72, 73}, TilePos{95, 73}, 1.0, TileType::WALL);
m_Map.PaintLine(TilePos{95,73}, TilePos{95,90}, 1.0, TileType::WALL); m_Map.PaintLine(TilePos{95, 73}, TilePos{95, 90}, 1.0, TileType::WALL);
m_Map.PaintLine(TilePos{71,81}, TilePos{71,100}, 1.0, TileType::WALL); m_Map.PaintLine(TilePos{71, 81}, TilePos{71, 100}, 1.0, TileType::WALL);
m_Map.PaintLine(TilePos{72,81}, TilePos{90,81}, 1.0, TileType::WALL); m_Map.PaintLine(TilePos{72, 81}, TilePos{90, 81}, 1.0, TileType::WALL);
m_Map.PaintLine(TilePos{89,87}, TilePos{89,100}, 1.0, TileType::WALL); m_Map.PaintLine(TilePos{89, 87}, TilePos{89, 100}, 1.0, TileType::WALL);
m_Map.PaintLine(TilePos{84,81}, TilePos{84,96}, 1.0, TileType::WALL); m_Map.PaintLine(TilePos{84, 81}, TilePos{84, 96}, 1.0, TileType::WALL);
m_Map.PaintLine(TilePos{78,87}, TilePos{78,100}, 1.0, TileType::WALL); m_Map.PaintLine(TilePos{78, 87}, TilePos{78, 100}, 1.0, TileType::WALL);
// add some controllable entities // add some controllable entities
m_Entities.clear(); m_Entities.clear();
auto player = std::make_shared<Player>(); auto player = std::make_shared<Player>();
player->SetPosition(m_Map.TileToWorld(TilePos{25, 20})); player->SetPosition(m_Map.TileToWorld(TilePos{25, 20}));
@@ -65,19 +64,16 @@ void PathFindingDemo::CreateMap() {
player2->SetPosition(m_Map.TileToWorld(TilePos{50, 20})); player2->SetPosition(m_Map.TileToWorld(TilePos{50, 20}));
AddEntity(player2); AddEntity(player2);
for (int i = 0; i < 1; i++) for (int i = 0; i < 1; i++) {
{ for (int j = 0; j < 10; j++) {
for (int j = 0; j < 10; j++)
{
auto p = std::make_shared<Player>(); auto p = std::make_shared<Player>();
p->SetPosition(m_Map.TileToWorld(TilePos{10+5*i, 40+5*j})); p->SetPosition(m_Map.TileToWorld(TilePos{10 + 5 * i, 40 + 5 * j}));
AddEntity(p); AddEntity(p);
} }
} }
// select everything - TODO this is just temporary for testing // select everything - TODO this is just temporary for testing
for (const auto& entity : m_Entities) for (const auto &entity : m_Entities) {
{
m_SelectedEntities.push_back(entity); m_SelectedEntities.push_back(entity);
} }
} }
@@ -86,23 +82,17 @@ WorldPos PathFindingDemo::GetRandomPosition() const {
return WorldPos{0.0f, 0.0f}; // totally random! return WorldPos{0.0f, 0.0f}; // totally random!
} }
const std::vector<Collision> &PathFindingDemo::GetEntityCollisions() {
const std::vector<Collision>& PathFindingDemo::GetEntityCollisions()
{
static std::vector<Collision> m_Collisions; static std::vector<Collision> m_Collisions;
m_Collisions.clear(); m_Collisions.clear();
for (const auto &entity_A : m_Entities) for (const auto &entity_A : m_Entities) {
{ for (const auto &entity_B : m_Entities) {
for (const auto &entity_B : m_Entities)
{
if (entity_A == entity_B) if (entity_A == entity_B)
continue; continue;
if (!entity_A->IsCollidable() || !entity_B->IsCollidable()) if (!entity_A->IsCollidable() || !entity_B->IsCollidable())
continue; continue;
if (entity_A->CollidesWith(*entity_B)) if (entity_A->CollidesWith(*entity_B)) {
{
// handle collision logic // handle collision logic
m_Collisions.emplace_back(Collision(entity_A, entity_B)); m_Collisions.emplace_back(Collision(entity_A, entity_B));
} }
@@ -111,37 +101,33 @@ const std::vector<Collision>& PathFindingDemo::GetEntityCollisions()
return m_Collisions; return m_Collisions;
} }
// Update entity positions, handle collisions // Update entity positions, handle collisions
void PathFindingDemo::UpdateWorld() { void PathFindingDemo::UpdateWorld() {
float time_delta = 1.0f; float time_delta = 1.0f;
for (auto& entity : m_Entities) for (auto &entity : m_Entities) {
{
// calculate the velocity // calculate the velocity
auto current_pos = entity->GetPosition(); auto current_pos = entity->GetPosition();
double tile_velocity_coeff = m_Map.GetTileVelocityCoeff(current_pos); double tile_velocity_coeff = m_Map.GetTileVelocityCoeff(current_pos);
auto next_pos = entity->GetMoveTarget(); auto next_pos = entity->GetMoveTarget();
WorldPos velocity = WorldPos{}; WorldPos velocity = WorldPos{};
if (next_pos) if (next_pos) {
{
velocity = next_pos.value() - current_pos; velocity = next_pos.value() - current_pos;
velocity.Normalize(); velocity.Normalize();
//LOG_DEBUG("I want to move to: ", next_pos.value(), // LOG_DEBUG("I want to move to: ", next_pos.value(),
// ", velocity: ", velocity); // ", velocity: ", velocity);
} }
entity->SetActualVelocity(velocity * tile_velocity_coeff); entity->SetActualVelocity(velocity * tile_velocity_coeff);
for (const auto& collision : GetEntityCollisions()) for (const auto &collision : GetEntityCollisions()) {
{ // TODO this loop is quite "hot", is it good idea to use weak_ptr and
// TODO this loop is quite "hot", is it good idea to use weak_ptr and promote it? // promote it?
auto weak_A = std::get<0>(collision); auto weak_A = std::get<0>(collision);
auto weak_B = std::get<1>(collision); auto weak_B = std::get<1>(collision);
auto A = weak_A.lock(); auto A = weak_A.lock();
auto B = weak_B.lock(); auto B = weak_B.lock();
if (A == nullptr || B == nullptr) if (A == nullptr || B == nullptr) {
{
continue; continue;
} }
if (!A->IsMovable()) if (!A->IsMovable())
@@ -152,65 +138,50 @@ void PathFindingDemo::UpdateWorld() {
A->ZeroActualVelocityInDirection(AB); A->ZeroActualVelocityInDirection(AB);
// handle logic // handle logic
// TODO // TODO
} }
// update the position // update the position
entity->Update(time_delta); entity->Update(time_delta);
} }
} }
void PathFindingDemo::HandleActions(const std::vector<UserAction> &actions) void PathFindingDemo::HandleActions(const std::vector<UserAction> &actions) {
{ for (const auto &action : actions) {
for (const auto &action : actions) if (action.type == UserAction::Type::EXIT) {
{
if (action.type == UserAction::Type::EXIT)
{
LOG_INFO("Exit requested"); LOG_INFO("Exit requested");
m_ExitRequested = true; m_ExitRequested = true;
} } else if (action.type == UserAction::Type::SET_MOVE_TARGET) {
else if (action.type == UserAction::Type::SET_MOVE_TARGET)
{
WorldPos target_pos = m_Camera.WindowToWorld(action.Argument.position); WorldPos target_pos = m_Camera.WindowToWorld(action.Argument.position);
for (auto& selected_entity : m_SelectedEntities) for (auto &selected_entity : m_SelectedEntities) {
{
LOG_INFO("Calculating path to target: ", target_pos); LOG_INFO("Calculating path to target: ", target_pos);
if (auto sp = selected_entity.lock()) if (auto sp = selected_entity.lock()) {
{ auto path =
auto path = m_PathFinder->CalculatePath(sp->GetPosition(), target_pos); m_PathFinder->CalculatePath(sp->GetPosition(), target_pos);
sp->SetPath(path); sp->SetPath(path);
LOG_INFO("Done, path node count: ", path.size()); LOG_INFO("Done, path node count: ", path.size());
} else { } else {
LOG_INFO("Cannot calculate path for destroyed entity (weak_ptr.lock() failed)"); LOG_INFO("Cannot calculate path for destroyed entity "
"(weak_ptr.lock() failed)");
} }
} }
} } else if (action.type == UserAction::Type::SELECT_PATHFINDER) {
else if (action.type == UserAction::Type::SELECT_PATHFINDER)
{
using namespace pathfinder; using namespace pathfinder;
PathFinderType type = static_cast<PathFinderType>(action.Argument.number); PathFinderType type = static_cast<PathFinderType>(action.Argument.number);
m_PathFinder = pathfinder::utils::create(type, (const Map*)&m_Map); m_PathFinder = pathfinder::utils::create(type, (const Map *)&m_Map);
LOG_INFO("Switched to path finding method: ", m_PathFinder->GetName()); LOG_INFO("Switched to path finding method: ", m_PathFinder->GetName());
} } else if (action.type == UserAction::Type::CAMERA_PAN) {
else if (action.type == UserAction::Type::CAMERA_PAN) const auto &window_pan = action.Argument.position;
{
const auto& window_pan = action.Argument.position;
WorldPos world_pan{window_pan.x(), window_pan.y()}; WorldPos world_pan{window_pan.x(), window_pan.y()};
m_Camera.Pan(world_pan); m_Camera.Pan(world_pan);
LOG_INFO("Camera pan delta: ", world_pan); LOG_INFO("Camera pan delta: ", world_pan);
} } else if (action.type == UserAction::Type::CAMERA_ZOOM) {
else if (action.type == UserAction::Type::CAMERA_ZOOM)
{
m_Camera.Zoom(action.Argument.float_number); m_Camera.Zoom(action.Argument.float_number);
LOG_INFO("Camera zoom: ", action.Argument.float_number); LOG_INFO("Camera zoom: ", action.Argument.float_number);
} } else if (action.type == UserAction::Type::SELECTION_START) {
else if (action.type == UserAction::Type::SELECTION_START)
{
m_SelectionBox.active = true; m_SelectionBox.active = true;
m_SelectionBox.start = action.Argument.position; m_SelectionBox.start = action.Argument.position;
m_SelectionBox.end = action.Argument.position; m_SelectionBox.end = action.Argument.position;
} } else if (action.type == UserAction::Type::SELECTION_END) {
else if (action.type == UserAction::Type::SELECTION_END)
{
m_SelectionBox.end = action.Argument.position; m_SelectionBox.end = action.Argument.position;
m_SelectionBox.active = false; m_SelectionBox.active = false;
auto diff = m_SelectionBox.end - m_SelectionBox.start; auto diff = m_SelectionBox.end - m_SelectionBox.start;
@@ -219,9 +190,7 @@ void PathFindingDemo::HandleActions(const std::vector<UserAction> &actions)
WorldPos start = m_Camera.WindowToWorld(m_SelectionBox.start); WorldPos start = m_Camera.WindowToWorld(m_SelectionBox.start);
WorldPos end = m_Camera.WindowToWorld(m_SelectionBox.end); WorldPos end = m_Camera.WindowToWorld(m_SelectionBox.end);
SelectEntitiesInRectangle(start, end); SelectEntitiesInRectangle(start, end);
} } else if (action.type == UserAction::Type::SELECTION_CHANGE) {
else if (action.type == UserAction::Type::SELECTION_CHANGE)
{
m_SelectionBox.end = action.Argument.position; m_SelectionBox.end = action.Argument.position;
auto diff = m_SelectionBox.end - m_SelectionBox.start; auto diff = m_SelectionBox.end - m_SelectionBox.start;
m_SelectionBox.size = diff.ChangeTag<WindowSizeTag>(); m_SelectionBox.size = diff.ChangeTag<WindowSizeTag>();
@@ -229,30 +198,25 @@ void PathFindingDemo::HandleActions(const std::vector<UserAction> &actions)
}; };
} }
void PathFindingDemo::DeselectEntities() void PathFindingDemo::DeselectEntities() {
{ std::for_each(m_SelectedEntities.begin(), m_SelectedEntities.end(),
std::for_each(m_SelectedEntities.begin(), m_SelectedEntities.end(), [](auto& x) [](auto &x) {
{ if (auto entity = x.lock())
if (auto entity = x.lock()) entity->Deselect();
entity->Deselect(); });
}
);
m_SelectedEntities.clear(); m_SelectedEntities.clear();
} }
void PathFindingDemo::SelectEntitiesInRectangle(WorldPos A, WorldPos B) void PathFindingDemo::SelectEntitiesInRectangle(WorldPos A, WorldPos B) {
{
DeselectEntities(); DeselectEntities();
// TODO use colliders for this // TODO use colliders for this
auto [x_min, x_max] = std::minmax(A.x(), B.x()); auto [x_min, x_max] = std::minmax(A.x(), B.x());
auto [y_min, y_max] = std::minmax(A.y(), B.y()); auto [y_min, y_max] = std::minmax(A.y(), B.y());
for (const auto& entity : m_Entities) for (const auto &entity : m_Entities) {
{ const auto &pos = entity->GetPosition();
const auto& pos = entity->GetPosition();
bool x_in_range = x_min < pos.x() && pos.x() < x_max; bool x_in_range = x_min < pos.x() && pos.x() < x_max;
bool y_in_range = y_min < pos.y() && pos.y() < y_max; bool y_in_range = y_min < pos.y() && pos.y() < y_max;
if (x_in_range && y_in_range) if (x_in_range && y_in_range) {
{
m_SelectedEntities.push_back(std::weak_ptr(entity)); m_SelectedEntities.push_back(std::weak_ptr(entity));
entity->Select(); entity->Select();
} }
@@ -260,12 +224,9 @@ void PathFindingDemo::SelectEntitiesInRectangle(WorldPos A, WorldPos B)
LOG_INFO("Selected ", m_SelectedEntities.size(), " entities"); LOG_INFO("Selected ", m_SelectedEntities.size(), " entities");
} }
std::pair<WindowPos, WindowSize> PathFindingDemo::GetSelectionBoxPosSize() std::pair<WindowPos, WindowSize> PathFindingDemo::GetSelectionBoxPosSize() {
{ const auto &pos = m_SelectionBox.start;
const auto& pos = m_SelectionBox.start;
WindowPos size_pos = m_SelectionBox.end - m_SelectionBox.start; WindowPos size_pos = m_SelectionBox.end - m_SelectionBox.start;
WindowSize size = size_pos.ChangeTag<WindowSizeTag>(); WindowSize size = size_pos.ChangeTag<WindowSizeTag>();
return std::pair(pos, size); return std::pair(pos, size);
} }

View File

@@ -5,17 +5,16 @@
#include <queue> #include <queue>
#include <vector> #include <vector>
#include "camera.hpp"
#include "entities.hpp" #include "entities.hpp"
#include "log.hpp" #include "log.hpp"
#include "map.hpp" #include "map.hpp"
#include "user_input.hpp"
#include "pathfinder/base.hpp" #include "pathfinder/base.hpp"
#include "camera.hpp" #include "user_input.hpp"
using Collision = std::pair<std::weak_ptr<Entity>, std::weak_ptr<Entity>>; using Collision = std::pair<std::weak_ptr<Entity>, std::weak_ptr<Entity>>;
struct SelectionBox struct SelectionBox {
{
WindowPos start, end; WindowPos start, end;
WindowSize size; WindowSize size;
bool active; bool active;
@@ -31,9 +30,9 @@ public:
PathFindingDemo &operator=(const PathFindingDemo &) = delete; PathFindingDemo &operator=(const PathFindingDemo &) = delete;
PathFindingDemo &operator=(PathFindingDemo &&) = delete; PathFindingDemo &operator=(PathFindingDemo &&) = delete;
std::vector<std::shared_ptr<Entity>>& GetEntities() { return m_Entities; } std::vector<std::shared_ptr<Entity>> &GetEntities() { return m_Entities; }
const Map& GetMap() const { return m_Map; } const Map &GetMap() const { return m_Map; }
const Camera& GetCamera() const { return m_Camera; } const Camera &GetCamera() const { return m_Camera; }
bool IsExitRequested() const { return m_ExitRequested; } bool IsExitRequested() const { return m_ExitRequested; }
void AddEntity(std::shared_ptr<Entity> e); void AddEntity(std::shared_ptr<Entity> e);
@@ -46,10 +45,12 @@ public:
void DeselectEntities(); void DeselectEntities();
bool IsSelectionBoxActive() const { return m_SelectionBox.active; } bool IsSelectionBoxActive() const { return m_SelectionBox.active; }
std::pair<WindowPos, WindowSize> GetSelectionBoxPosSize(); std::pair<WindowPos, WindowSize> GetSelectionBoxPosSize();
std::vector<std::weak_ptr<Entity>> GetSelectedEntities() { return m_SelectedEntities; } std::vector<std::weak_ptr<Entity>> GetSelectedEntities() {
return m_SelectedEntities;
}
private: private:
const std::vector<Collision>& GetEntityCollisions(); const std::vector<Collision> &GetEntityCollisions();
bool m_ExitRequested = false; bool m_ExitRequested = false;
Map m_Map; Map m_Map;

View File

@@ -0,0 +1,256 @@
#pragma once
#include <vector>
#include <memory>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <iterator>
#include "math.hpp"
#include "log.hpp"
template <typename T>
concept HasPosition = requires(T t, WorldPos pos) {
{ t.GetPosition() } -> std::convertible_to<WorldPos>;
t.SetPosition(pos);
};
template <typename T>
concept HasCollisions = requires(T t) {
t.Dummy(); // TODO
};
template <typename T>
requires HasPosition<T>
class IPositionalContainer
{
public:
virtual ~IPositionalContainer() = default;
virtual bool Add(std::shared_ptr<T> t) = 0;
virtual std::vector<std::weak_ptr<T>> Get(const WorldPos& p, float radius) = 0;
virtual void UpdateAll() = 0;
virtual void Update(std::shared_ptr<T> item) = 0;
};
template <typename T>
class IColliderContainer : public IPositionalContainer<T>
{
public:
virtual std::vector<std::weak_ptr<T>> GetCollisions() = 0;
};
template <typename T>
class SimpleContainer : IPositionalContainer<T>
{
public:
bool Add(std::shared_ptr<T> t) override
{
m_Items.push_back(t);
return true;
}
std::vector<std::weak_ptr<T>> Get(const WorldPos& center, float radius) override
{
std::vector<std::weak_ptr<T>> matched_items;
for (const auto& item : m_Items)
{
if (center.DistanceTo(item->GetPosition()) < radius)
{
matched_items.push_back(item);
}
}
return matched_items;
}
// no update needed here, as we have no smart lookup scheme
void UpdateAll() override {}
void Update(std::shared_ptr<T>) override {}
private:
std::vector<std::shared_ptr<T>> m_Items;
};
template <class T>
class PositionalContainer : IPositionalContainer<T>
{
public:
PositionalContainer(const WorldSize& size, size_t chunks) :
m_GridSize{size},
m_GridStep{size / chunks},
m_ChunksPerAxis{chunks}
{
LOG_INFO("Size: ", m_GridSize, " step: ", m_GridStep);
m_Grid.reserve(chunks);
for (size_t i = 0; i < chunks; i++)
{
m_Grid.emplace_back(chunks);
for (size_t j = 0; j < chunks; j++)
{
m_Grid[i][j].reserve(16);
}
}
}
// calling Add on object that is already in the container is UB
bool Add(std::shared_ptr<T> item) override
{
const auto& world_pos = item->GetPosition();
if (!CheckBounds(world_pos))
{
return false;
}
m_Items.push_back(item);
auto coords = GetCoords(world_pos);
m_Grid[coords.x()][coords.y()].push_back(item);
m_ReverseGridLookup[item] = coords;
// TODO should we call Update instead?
//Update(item);
return true;
}
std::vector<std::weak_ptr<T>> Get(const WorldPos& center, float radius) override
{
vector_wptr output_vec{};
Get(output_vec, center, radius);
return output_vec;
}
void Get(std::vector<std::weak_ptr<T>>& output_vec, const WorldPos& corner, const WorldSize& size)
{
const WorldSize half_size = size / 2.0f;
const WorldPos center = corner + half_size.ChangeTag<WorldPos>();
float radius = half_size.x();
Get(output_vec, center, radius);
}
// TODO add those Get methods to the interface
void Get(std::vector<std::weak_ptr<T>>& output_vec, const WorldPos& center, float radius)
{
output_vec.clear();
const WorldPos corner_1 = center + radius;
const WorldPos corner_2 = center - radius;
const auto A = GetCoords(corner_1);
const auto B = GetCoords(corner_2);
auto [x_min_f, x_max_f] = std::minmax(A.x(), B.x());
auto [y_min_f, y_max_f] = std::minmax(A.y(), B.y());
size_t x_min = static_cast<size_t>(std::floor(x_min_f));
size_t x_max = static_cast<size_t>(std::ceil(x_max_f));
size_t y_min = static_cast<size_t>(std::floor(y_min_f));
size_t y_max = static_cast<size_t>(std::ceil(y_max_f));
for (size_t x = x_min; x <= x_max; x++)
{
for (size_t y = y_min; y <= y_max; y++)
{
if (!CheckBounds(x, y))
{
continue;
}
#if 0
// TODO this is approx 2x faster, but inserts items outside of radius;
// We can use this is a Get(rectangle) function
std::ranges::copy(m_Grid[x][y], std::back_inserter(output_vec));
#else
for (auto item_wptr : m_Grid[x][y])
{
if (auto shared = item_wptr.lock())
{
if (center.DistanceTo(shared->GetPosition()) < radius)
{
output_vec.push_back(item_wptr);
}
}
}
#endif
}
}
}
void UpdateAll() override
{
for (auto ptr : m_Items)
{
// TODO is this efficient? Maybe use const ref?
Update(ptr);
}
}
void Update(std::shared_ptr<T> item) override
{
coord_type current_coords = GetCoords(item->GetPosition());
coord_type last_known_coords = m_ReverseGridLookup[item];
if (current_coords == last_known_coords)
{
return;
}
vector_wptr& vec = m_Grid[last_known_coords.x()][last_known_coords.y()];
// remove the old weak ptr from the map
vec.erase(std::remove_if(vec.begin(), vec.end(),
[&](const std::weak_ptr<T>& w)
{
return !w.owner_before(item) && !item.owner_before(w);
}),
vec.end());
// add new weak ptr to the map
m_Grid[current_coords.x()][current_coords.y()].push_back(item);
}
private:
using coord_type = vec<size_t, 2>;
using vector_wptr = std::vector<std::weak_ptr<T>>;
using grid_type = std::vector<std::vector<vector_wptr>>;
coord_type GetCoords(const WorldPos &wp)
{
auto coord_float = wp / m_GridStep.ChangeTag<WorldPos>();
return coord_type{
static_cast<size_t>(coord_float.x()),
static_cast<size_t>(coord_float.y())
};
}
bool CheckBounds(size_t x, size_t y) const
{
bool x_in_bounds = x < m_Grid.size();
bool y_in_bounds = y < m_Grid.size();
return x_in_bounds && y_in_bounds;
}
bool CheckBounds(const WorldPos& pos) const
{
auto [x,y] = pos;
bool x_in_bounds = 0.0f < x && x < m_GridSize.x();
bool y_in_bounds = 0.0f < y && y < m_GridSize.y();
return x_in_bounds && y_in_bounds;
}
WorldSize m_GridSize;
WorldSize m_GridStep;
size_t m_ChunksPerAxis;
// TODO it would be better to have vector<T> - contiguous memory, more cache-friendly?
std::vector<std::shared_ptr<T>> m_Items;
grid_type m_Grid;
// normal lookup: WorldPos -> coord_type -> vector_wptr -> std::shared_ptr<T>
// reverse lookup: std::shared_ptr<T> -> vector_wptr -> coord_type
// we need the reverse lookup because T.GetPosition() may change and we need to delete
// the old weak_ptr from vector_wptr (without iterating through all of them).
// Also it might be useful to have T -> location lookup
// Note: hash of std::shared_ptr<T> may give us trouble if we free the memory and new one points
// to the same location, maybe it would be better to hash the object itself?
// TODO how about using counting bloom filter for this?
std::unordered_map<std::shared_ptr<T>, coord_type> m_ReverseGridLookup;
};

View File

@@ -6,9 +6,9 @@
// we could use array here, but this is more explicit, // we could use array here, but this is more explicit,
// and we don't access tile_types that often, so it should be ok // and we don't access tile_types that often, so it should be ok
const std::unordered_map<TileType, Tile> tile_types = { const std::unordered_map<TileType, Tile> tile_types = {
{ TileType::GRASS, Tile{1.0, 0, 200, 0, 255}}, {TileType::GRASS, Tile{1.0, 0, 200, 0, 255}},
{ TileType::WOOD, Tile{1.0, 132, 68, 0, 255}}, {TileType::WOOD, Tile{1.0, 132, 68, 0, 255}},
{ TileType::ROAD, Tile{0.5, 20, 20, 20, 255}}, {TileType::ROAD, Tile{0.5, 20, 20, 20, 255}},
{ TileType::WATER, Tile{10.0, 0, 50, 200, 255}}, {TileType::WATER, Tile{10.0, 0, 50, 200, 255}},
{ TileType::WALL, Tile{1000.0, 144, 33, 0, 255}}, {TileType::WALL, Tile{1000.0, 144, 33, 0, 255}},
}; };

View File

@@ -1,9 +1,9 @@
#pragma once #pragma once
#include <array>
#include <cstdint> #include <cstdint>
#include <map> #include <map>
#include <string_view> #include <string_view>
#include <array>
#include <unordered_map> #include <unordered_map>
struct Tile { struct Tile {

View File

@@ -2,8 +2,8 @@
#include <expected> #include <expected>
#include <map> #include <map>
#include <string> #include <string>
#include <vector>
#include <unordered_set> #include <unordered_set>
#include <vector>
#include "user_input.hpp" #include "user_input.hpp"
@@ -20,130 +20,103 @@ UserInput::~UserInput() { LOG_DEBUG("."); };
std::expected<void, std::string> UserInput::Init() { return {}; } std::expected<void, std::string> UserInput::Init() { return {}; }
void UserInput::GetActions_mouse(const SDL_Event& event) void UserInput::GetActions_mouse(const SDL_Event &event) {
{
static bool mouse_pan = false; static bool mouse_pan = false;
SDL_MouseButtonEvent mouse_event = event.button; SDL_MouseButtonEvent mouse_event = event.button;
MouseButton button = static_cast<MouseButton>(mouse_event.button); MouseButton button = static_cast<MouseButton>(mouse_event.button);
if (event.type == SDL_EVENT_MOUSE_BUTTON_DOWN) if (event.type == SDL_EVENT_MOUSE_BUTTON_DOWN) {
{ if (button == MouseButton::LEFT) {
if (button == MouseButton::LEFT)
{
LOG_DEBUG("Selection start at ", mouse_event.x, ", ", mouse_event.y); LOG_DEBUG("Selection start at ", mouse_event.x, ", ", mouse_event.y);
m_SelectionActive = true; m_SelectionActive = true;
m_Actions.emplace_back(UserAction::Type::SELECTION_START, m_Actions.emplace_back(UserAction::Type::SELECTION_START,
WindowPos{mouse_event.x, mouse_event.y}); WindowPos{mouse_event.x, mouse_event.y});
} } else if (button == MouseButton::RIGHT) {
else if (button == MouseButton::RIGHT)
{
LOG_DEBUG("Set move target to: ", mouse_event.x, ", ", mouse_event.y); LOG_DEBUG("Set move target to: ", mouse_event.x, ", ", mouse_event.y);
m_Actions.emplace_back(UserAction::Type::SET_MOVE_TARGET, m_Actions.emplace_back(UserAction::Type::SET_MOVE_TARGET,
WindowPos{mouse_event.x, mouse_event.y}); WindowPos{mouse_event.x, mouse_event.y});
} } else if (button == MouseButton::MIDDLE) {
else if (button == MouseButton::MIDDLE)
{
mouse_pan = true; mouse_pan = true;
} }
} } else if (event.type == SDL_EVENT_MOUSE_BUTTON_UP) {
else if (event.type == SDL_EVENT_MOUSE_BUTTON_UP) if (button == MouseButton::LEFT) {
{
if (button == MouseButton::LEFT)
{
LOG_DEBUG("Selection end at ", mouse_event.x, ", ", mouse_event.y); LOG_DEBUG("Selection end at ", mouse_event.x, ", ", mouse_event.y);
m_SelectionActive = false; m_SelectionActive = false;
m_Actions.emplace_back(UserAction::Type::SELECTION_END, m_Actions.emplace_back(UserAction::Type::SELECTION_END,
WindowPos{mouse_event.x, mouse_event.y}); WindowPos{mouse_event.x, mouse_event.y});
} }
if (button == MouseButton::MIDDLE) if (button == MouseButton::MIDDLE) {
{
mouse_pan = false; mouse_pan = false;
} }
} } else if (event.type == SDL_EVENT_MOUSE_MOTION) {
else if (event.type == SDL_EVENT_MOUSE_MOTION)
{
SDL_MouseMotionEvent motion_event = event.motion; SDL_MouseMotionEvent motion_event = event.motion;
if (mouse_pan) if (mouse_pan) {
{
m_Actions.emplace_back(UserAction::Type::CAMERA_PAN, m_Actions.emplace_back(UserAction::Type::CAMERA_PAN,
WindowPos{motion_event.xrel, motion_event.yrel}); WindowPos{motion_event.xrel, motion_event.yrel});
} }
if (m_SelectionActive) if (m_SelectionActive) {
{
m_Actions.emplace_back(UserAction::Type::SELECTION_CHANGE, m_Actions.emplace_back(UserAction::Type::SELECTION_CHANGE,
WindowPos{mouse_event.x, mouse_event.y}); WindowPos{mouse_event.x, mouse_event.y});
} }
} } else if (event.type == SDL_EVENT_MOUSE_WHEEL) {
else if(event.type == SDL_EVENT_MOUSE_WHEEL)
{
SDL_MouseWheelEvent mouse_wheel = event.wheel; SDL_MouseWheelEvent mouse_wheel = event.wheel;
m_Actions.emplace_back(UserAction::Type::CAMERA_ZOOM, mouse_wheel.y); m_Actions.emplace_back(UserAction::Type::CAMERA_ZOOM, mouse_wheel.y);
} }
} }
void UserInput::GetActions_keyboard(const SDL_Event& event) void UserInput::GetActions_keyboard(const SDL_Event &event) {
{ bool key_down = event.type == SDL_EVENT_KEY_DOWN ? true : false;
bool key_down = event.type == SDL_EVENT_KEY_DOWN ? true : false; SDL_KeyboardEvent kbd_event = event.key;
SDL_KeyboardEvent kbd_event = event.key; if (kbd_event.repeat) {
if (kbd_event.repeat) { // SDL repeats KEY_DOWN if key is held down, we ignore that
// SDL repeats KEY_DOWN if key is held down, we ignore that return;
return; }
} LOG_DEBUG("Key '", static_cast<char>(kbd_event.key),
LOG_DEBUG("Key '", static_cast<char>(kbd_event.key), key_down ? "' down" : "' up");
key_down ? "' down" : "' up");
switch (kbd_event.key) { switch (kbd_event.key) {
case 'q': case 'q':
m_Actions.emplace_back(UserAction::Type::EXIT); m_Actions.emplace_back(UserAction::Type::EXIT);
return; return;
case '1': case '1':
case '2': case '2':
case '3': case '3':
case '4': case '4':
if (key_down) { if (key_down) {
int selection = kbd_event.key - '0'; int selection = kbd_event.key - '0';
m_Actions.emplace_back(UserAction::Type::SELECT_PATHFINDER, selection); m_Actions.emplace_back(UserAction::Type::SELECT_PATHFINDER, selection);
LOG_INFO("Pathfinder selected: ", selection); LOG_INFO("Pathfinder selected: ", selection);
} }
break; break;
default: default:
LOG_INFO("Key '", static_cast<char>(kbd_event.key), "' not mapped"); LOG_INFO("Key '", static_cast<char>(kbd_event.key), "' not mapped");
break; break;
} }
} }
const std::vector<UserAction>& UserInput::GetActions() { const std::vector<UserAction> &UserInput::GetActions() {
static std::unordered_set<uint32_t> mouse_events = { static std::unordered_set<uint32_t> mouse_events = {
SDL_EVENT_MOUSE_MOTION, SDL_EVENT_MOUSE_MOTION, SDL_EVENT_MOUSE_BUTTON_DOWN,
SDL_EVENT_MOUSE_BUTTON_DOWN, SDL_EVENT_MOUSE_BUTTON_UP, SDL_EVENT_MOUSE_WHEEL,
SDL_EVENT_MOUSE_BUTTON_UP, SDL_EVENT_MOUSE_ADDED, SDL_EVENT_MOUSE_REMOVED,
SDL_EVENT_MOUSE_WHEEL,
SDL_EVENT_MOUSE_ADDED,
SDL_EVENT_MOUSE_REMOVED,
}; };
static std::unordered_set<uint32_t> keyboard_events = { static std::unordered_set<uint32_t> keyboard_events = {
SDL_EVENT_KEY_DOWN, SDL_EVENT_KEY_DOWN,
SDL_EVENT_KEY_UP, SDL_EVENT_KEY_UP,
}; };
SDL_Event event; SDL_Event event;
m_Actions.clear(); m_Actions.clear();
while (SDL_PollEvent(&event)) while (SDL_PollEvent(&event)) {
{ if (keyboard_events.contains(event.type)) {
if (keyboard_events.contains(event.type))
{
GetActions_keyboard(event); GetActions_keyboard(event);
} } else if (mouse_events.contains(event.type)) {
else if (mouse_events.contains(event.type)) GetActions_mouse(event);
{ } else {
GetActions_mouse(event);
}
else
{
// TODO uncomment, for now too much noise // TODO uncomment, for now too much noise
// LOG_WARNING("Action not processed"); // LOG_WARNING("Action not processed");
} }

View File

@@ -7,14 +7,12 @@
#include "log.hpp" #include "log.hpp"
#include "math.hpp" #include "math.hpp"
// Seems like SDL doesn't have named constants for mouse button // Seems like SDL doesn't have named constants for mouse button
enum class MouseButton { LEFT = 1, MIDDLE, RIGHT }; enum class MouseButton { LEFT = 1, MIDDLE, RIGHT };
class UserAction { class UserAction {
public: public:
enum class Type {
enum class Type
{
NONE, NONE,
EXIT, EXIT,
SET_MOVE_TARGET, SET_MOVE_TARGET,
@@ -44,7 +42,7 @@ public:
} Argument; } Argument;
// TODO use std::variant // TODO use std::variant
//std::variant<WindowPos, char, int> Argument; // std::variant<WindowPos, char, int> Argument;
}; };
class UserInput { class UserInput {
@@ -65,6 +63,6 @@ private:
std::vector<UserAction> m_Actions; std::vector<UserAction> m_Actions;
bool m_SelectionActive = false; bool m_SelectionActive = false;
void GetActions_keyboard(const SDL_Event&); void GetActions_keyboard(const SDL_Event &);
void GetActions_mouse(const SDL_Event&); void GetActions_mouse(const SDL_Event &);
}; };

View File

@@ -79,19 +79,20 @@ Window::~Window() {
void Window::DrawSprite(const WindowPos &position, Sprite &s, float scale) { void Window::DrawSprite(const WindowPos &position, Sprite &s, float scale) {
WorldSize size = s.GetSize() * scale; WorldSize size = s.GetSize() * scale;
WorldPos img_center = s.GetCenter() * scale; WorldPos img_center = s.GetCenter() * scale;
SDL_FRect rect = {position.x() - img_center.x(), position.y() - img_center.y(), SDL_FRect rect = {position.x() - img_center.x(),
size.x(), size.y()}; position.y() - img_center.y(), size.x(), size.y()};
SDL_RenderTexture(m_Renderer.get(), s.GetTexture(), nullptr, &rect); SDL_RenderTexture(m_Renderer.get(), s.GetTexture(), nullptr, &rect);
} }
void Window::DrawFilledRect(const WindowPos &position, const WindowSize size, uint8_t R, void Window::DrawFilledRect(const WindowPos &position, const WindowSize size,
uint8_t G, uint8_t B, uint8_t A) { uint8_t R, uint8_t G, uint8_t B, uint8_t A) {
SDL_FRect rect = {position.x(), position.y(), size.x(), size.y()}; SDL_FRect rect = {position.x(), position.y(), size.x(), size.y()};
SDL_SetRenderDrawColor(m_Renderer.get(), R, G, B, A); SDL_SetRenderDrawColor(m_Renderer.get(), R, G, B, A);
SDL_RenderFillRect(m_Renderer.get(), &rect); SDL_RenderFillRect(m_Renderer.get(), &rect);
} }
void Window::DrawRect(const WindowPos &position, const WindowSize size, uint8_t R, uint8_t G, uint8_t B) { void Window::DrawRect(const WindowPos &position, const WindowSize size,
uint8_t R, uint8_t G, uint8_t B) {
SDL_FRect rect = {position.x(), position.y(), size.x(), size.y()}; SDL_FRect rect = {position.x(), position.y(), size.x(), size.y()};
SDL_SetRenderDrawColor(m_Renderer.get(), R, G, B, 255); SDL_SetRenderDrawColor(m_Renderer.get(), R, G, B, 255);
SDL_RenderRect(m_Renderer.get(), &rect); SDL_RenderRect(m_Renderer.get(), &rect);
@@ -105,7 +106,8 @@ void Window::ClearWindow() {
void Window::Flush() { SDL_RenderPresent(m_Renderer.get()); } void Window::Flush() { SDL_RenderPresent(m_Renderer.get()); }
// TODO use some struct for color // TODO use some struct for color
void Window::DrawCircle(const WindowPos &position, float radius, uint8_t R, uint8_t G, uint8_t B) { void Window::DrawCircle(const WindowPos &position, float radius, uint8_t R,
uint8_t G, uint8_t B) {
int cx = static_cast<int>(position.x()); int cx = static_cast<int>(position.x());
int cy = static_cast<int>(position.y()); int cy = static_cast<int>(position.y());
SDL_SetRenderDrawColor(m_Renderer.get(), R, G, B, 255); SDL_SetRenderDrawColor(m_Renderer.get(), R, G, B, 255);
@@ -117,9 +119,7 @@ void Window::DrawCircle(const WindowPos &position, float radius, uint8_t R, uint
} }
} }
void Window::DrawLine(const WindowPos &A, const WindowPos &B) void Window::DrawLine(const WindowPos &A, const WindowPos &B) {
{
SDL_SetRenderDrawColor(m_Renderer.get(), 255, 0, 0, 255); SDL_SetRenderDrawColor(m_Renderer.get(), 255, 0, 0, 255);
SDL_RenderLine(m_Renderer.get(), A.x(), A.y(), B.x(), B.y()); SDL_RenderLine(m_Renderer.get(), A.x(), A.y(), B.x(), B.y());
} }

View File

@@ -23,12 +23,14 @@ public:
std::expected<void, std::string> Init(); std::expected<void, std::string> Init();
void DrawSprite(const WindowPos &position, Sprite &s, float scale = 1.0f); void DrawSprite(const WindowPos &position, Sprite &s, float scale = 1.0f);
void DrawFilledRect(const WindowPos &position, const WindowSize size, uint8_t R, void DrawFilledRect(const WindowPos &position, const WindowSize size,
uint8_t G, uint8_t B, uint8_t A); uint8_t R, uint8_t G, uint8_t B, uint8_t A);
void DrawRect(const WindowPos &position, const WindowSize size, uint8_t R, uint8_t G, uint8_t B); void DrawRect(const WindowPos &position, const WindowSize size, uint8_t R,
uint8_t G, uint8_t B);
void ClearWindow(); void ClearWindow();
void Flush(); void Flush();
void DrawCircle(const WindowPos &position, float radius, uint8_t R, uint8_t G, uint8_t B); void DrawCircle(const WindowPos &position, float radius, uint8_t R, uint8_t G,
uint8_t B);
void DrawLine(const WindowPos &A, const WindowPos &B); void DrawLine(const WindowPos &A, const WindowPos &B);
private: private:
@@ -37,5 +39,4 @@ private:
std::shared_ptr<SDL_Renderer> m_Renderer = nullptr; std::shared_ptr<SDL_Renderer> m_Renderer = nullptr;
SDL_Window *m_Window; SDL_Window *m_Window;
SDL_GLContext m_Context; SDL_GLContext m_Context;
}; };

View File

@@ -2,10 +2,11 @@
#include <chrono> #include <chrono>
#include <iostream> #include <iostream>
#include <iomanip> #include <iomanip>
#include <random>
#include <algorithm>
#include <set>
// TODO: Add necessary includes for collision testing #include "positional_container.hpp"
// #include "collision_shapes.hpp"
// #include "entities.hpp"
/** /**
* @file collision_performance.cpp * @file collision_performance.cpp
@@ -74,33 +75,177 @@ void benchmark_function(const std::string& name, int iterations, Func func) {
<< " ops/sec" << std::endl; << " ops/sec" << std::endl;
} }
// Example test function 1 /**
void test_function_1() { * @brief Simple dummy class that conforms to HasPosition concept
// TODO: Implement actual collision test * Used for testing PositionalContainer without heavy dependencies
volatile int sum = 0; */
for (int i = 0; i < 1000; ++i) { class Dummy {
sum += i; public:
} Dummy() : m_Position{0.0f, 0.0f}, m_Id(next_id++) {}
Dummy(float x, float y) : m_Position{x, y}, m_Id(next_id++) {}
Dummy(WorldPos pos) : m_Position(pos), m_Id(next_id++) {}
WorldPos GetPosition() const { return m_Position; }
void SetPosition(WorldPos pos) { m_Position = pos; }
int GetId() const { return m_Id; }
private:
WorldPos m_Position;
int m_Id;
static int next_id;
};
int Dummy::next_id = 0;
/**
* @brief Helper function to generate random float in range [min, max]
*/
float random_float(std::mt19937& gen, float min, float max) {
std::uniform_real_distribution<float> dist(min, max);
return dist(gen);
} }
// Example test function 2 /**
void test_function_2() { * @brief Compare two sets of weak_ptrs by comparing the IDs of the objects they point to
// TODO: Implement actual collision test */
volatile int product = 1; bool compare_results(const std::vector<std::weak_ptr<Dummy>>& a,
for (int i = 1; i < 100; ++i) { const std::vector<std::weak_ptr<Dummy>>& b) {
product *= (i % 10 + 1); std::set<int> ids_a, ids_b;
for (const auto& weak : a) {
if (auto shared = weak.lock()) {
ids_a.insert(shared->GetId());
}
} }
for (const auto& weak : b) {
if (auto shared = weak.lock()) {
ids_b.insert(shared->GetId());
}
}
return ids_a == ids_b;
} }
TEST(CollisionPerformance, CompareAlgorithms) { TEST(CollisionPerformance, CompareContainers) {
std::cout << "\n=== Collision Performance Comparison ===\n" << std::endl; std::cout << "\n=== Collision Performance Comparison ===\n" << std::endl;
const int iterations = 10000; // Configuration
const int NUM_OBJECTS = 1000;
const int NUM_LOOKUPS = 100;
const float WORLD_SIZE = 1000.0f;
const float LOOKUP_RADIUS = 50.0f;
const size_t CHUNKS = 20;
benchmark_function("Algorithm 1 (test_function_1)", iterations, test_function_1); // Random number generator
benchmark_function("Algorithm 2 (test_function_2)", iterations, test_function_2); std::random_device rd;
std::mt19937 gen(rd());
// Create containers
PositionalContainer<Dummy> pos_cont{WorldSize{WORLD_SIZE, WORLD_SIZE}, CHUNKS};
SimpleContainer<Dummy> simp_cont;
// Create and add dummy objects with random positions
std::vector<std::shared_ptr<Dummy>> objects;
objects.reserve(NUM_OBJECTS);
std::cout << "Creating " << NUM_OBJECTS << " objects with random positions..." << std::endl;
for (int i = 0; i < NUM_OBJECTS; ++i) {
float x = random_float(gen, 10.0f, WORLD_SIZE - 10.0f);
float y = random_float(gen, 10.0f, WORLD_SIZE - 10.0f);
auto obj = std::make_shared<Dummy>(x, y);
objects.push_back(obj);
pos_cont.Add(obj);
simp_cont.Add(obj);
}
std::cout << "Objects created and added to containers." << std::endl;
// Generate random lookup positions
std::vector<WorldPos> lookup_positions;
lookup_positions.reserve(NUM_LOOKUPS);
for (int i = 0; i < NUM_LOOKUPS; ++i) {
float x = random_float(gen, 0.0f, WORLD_SIZE);
float y = random_float(gen, 0.0f, WORLD_SIZE);
lookup_positions.push_back(WorldPos{x, y});
}
// Benchmark SimpleContainer
double simple_total_time = 0.0;
std::vector<std::vector<std::weak_ptr<Dummy>>> simple_results;
simple_results.reserve(NUM_LOOKUPS);
std::cout << "\nBenchmarking SimpleContainer with " << NUM_LOOKUPS << " lookups..." << std::endl;
for (const auto& pos : lookup_positions) {
auto start = PerformanceTimer::Clock::now();
auto result = simp_cont.Get(pos, LOOKUP_RADIUS);
auto end = PerformanceTimer::Clock::now();
PerformanceTimer::Duration duration = end - start;
simple_total_time += duration.count();
simple_results.push_back(result);
}
double simple_avg_time = simple_total_time / NUM_LOOKUPS;
std::cout << std::fixed << std::setprecision(6)
<< "[BENCHMARK] SimpleContainer:\n"
<< " Total time: " << simple_total_time << " ms\n"
<< " Average time per lookup: " << simple_avg_time << " ms\n"
<< " Throughput: " << (NUM_LOOKUPS / (simple_total_time / 1000.0))
<< " lookups/sec" << std::endl;
// Benchmark PositionalContainer
double positional_total_time = 0.0;
std::vector<std::vector<std::weak_ptr<Dummy>>> positional_results;
positional_results.reserve(NUM_LOOKUPS);
std::cout << "\nBenchmarking PositionalContainer with " << NUM_LOOKUPS << " lookups..." << std::endl;
for (const auto& pos : lookup_positions) {
auto start = PerformanceTimer::Clock::now();
auto result = pos_cont.Get(pos, LOOKUP_RADIUS);
auto end = PerformanceTimer::Clock::now();
PerformanceTimer::Duration duration = end - start;
positional_total_time += duration.count();
positional_results.push_back(result);
}
double positional_avg_time = positional_total_time / NUM_LOOKUPS;
std::cout << std::fixed << std::setprecision(6)
<< "[BENCHMARK] PositionalContainer:\n"
<< " Total time: " << positional_total_time << " ms\n"
<< " Average time per lookup: " << positional_avg_time << " ms\n"
<< " Throughput: " << (NUM_LOOKUPS / (positional_total_time / 1000.0))
<< " lookups/sec" << std::endl;
// Verify results match
std::cout << "\nVerifying results correctness..." << std::endl;
int mismatches = 0;
for (size_t i = 0; i < NUM_LOOKUPS; ++i) {
if (!compare_results(simple_results[i], positional_results[i])) {
mismatches++;
std::cout << "Mismatch at lookup " << i
<< " (pos: " << lookup_positions[i] << ")" << std::endl;
}
}
if (mismatches == 0) {
std::cout << "✓ All " << NUM_LOOKUPS << " lookups produced identical results!" << std::endl;
} else {
std::cout << "✗ Found " << mismatches << " mismatches out of "
<< NUM_LOOKUPS << " lookups" << std::endl;
}
// Performance comparison
std::cout << "\n=== Performance Summary ===\n";
double speedup = simple_avg_time / positional_avg_time;
std::cout << std::fixed << std::setprecision(2)
<< "PositionalContainer is " << speedup << "x "
<< (speedup > 1.0 ? "faster" : "slower")
<< " than SimpleContainer" << std::endl;
std::cout << "\n======================================\n" << std::endl; std::cout << "\n======================================\n" << std::endl;
SUCCEED(); // Assertions
EXPECT_EQ(mismatches, 0) << "Results should match between containers";
EXPECT_GT(speedup, 1.0) << "PositionalContainer should be faster than SimpleContainer";
} }

View File

@@ -7,6 +7,7 @@
#include "log.hpp" #include "log.hpp"
#include "math.hpp" #include "math.hpp"
#include "positional_container.hpp"
TEST(vec, DefaultConstruction) { TEST(vec, DefaultConstruction) {
@@ -172,6 +173,86 @@ TEST(vec, Sub)
ASSERT_FLOAT_EQ(negative_result[2], -3.0f); ASSERT_FLOAT_EQ(negative_result[2], -3.0f);
} }
TEST(vec, ScalarAddition)
{
// Test operator+ with float vector and scalar
vec3 v1{1.0f, 2.0f, 3.0f};
vec3 result = v1 + 5.0f;
ASSERT_FLOAT_EQ(result[0], 6.0f);
ASSERT_FLOAT_EQ(result[1], 7.0f);
ASSERT_FLOAT_EQ(result[2], 8.0f);
// Test operator+ with integer vector and scalar
ivec3 iv1{10, 20, 30};
ivec3 iresult = iv1 + 5;
ASSERT_EQ(iresult[0], 15);
ASSERT_EQ(iresult[1], 25);
ASSERT_EQ(iresult[2], 35);
// Test that original vector is unchanged
ASSERT_FLOAT_EQ(v1[0], 1.0f);
ASSERT_FLOAT_EQ(v1[1], 2.0f);
ASSERT_FLOAT_EQ(v1[2], 3.0f);
// Test addition with negative scalar
vec3 v2{5.0f, 10.0f, 15.0f};
vec3 negative_result = v2 + (-3.0f);
ASSERT_FLOAT_EQ(negative_result[0], 2.0f);
ASSERT_FLOAT_EQ(negative_result[1], 7.0f);
ASSERT_FLOAT_EQ(negative_result[2], 12.0f);
// Test addition with zero
vec3 v3{1.0f, 2.0f, 3.0f};
vec3 zero_result = v3 + 0.0f;
ASSERT_FLOAT_EQ(zero_result[0], 1.0f);
ASSERT_FLOAT_EQ(zero_result[1], 2.0f);
ASSERT_FLOAT_EQ(zero_result[2], 3.0f);
}
TEST(vec, ScalarSubtraction)
{
// Test operator- with float vector and scalar
vec3 v1{10.0f, 15.0f, 20.0f};
vec3 result = v1 - 5.0f;
ASSERT_FLOAT_EQ(result[0], 5.0f);
ASSERT_FLOAT_EQ(result[1], 10.0f);
ASSERT_FLOAT_EQ(result[2], 15.0f);
// Test operator- with integer vector and scalar
ivec3 iv1{50, 40, 30};
ivec3 iresult = iv1 - 10;
ASSERT_EQ(iresult[0], 40);
ASSERT_EQ(iresult[1], 30);
ASSERT_EQ(iresult[2], 20);
// Test that original vector is unchanged
ASSERT_FLOAT_EQ(v1[0], 10.0f);
ASSERT_FLOAT_EQ(v1[1], 15.0f);
ASSERT_FLOAT_EQ(v1[2], 20.0f);
// Test subtraction with negative scalar (equivalent to addition)
vec3 v2{5.0f, 10.0f, 15.0f};
vec3 negative_result = v2 - (-3.0f);
ASSERT_FLOAT_EQ(negative_result[0], 8.0f);
ASSERT_FLOAT_EQ(negative_result[1], 13.0f);
ASSERT_FLOAT_EQ(negative_result[2], 18.0f);
// Test subtraction resulting in negative values
vec3 v3{1.0f, 2.0f, 3.0f};
vec3 negative_vals_result = v3 - 5.0f;
ASSERT_FLOAT_EQ(negative_vals_result[0], -4.0f);
ASSERT_FLOAT_EQ(negative_vals_result[1], -3.0f);
ASSERT_FLOAT_EQ(negative_vals_result[2], -2.0f);
}
TEST(vec, ScalarMultiplication) TEST(vec, ScalarMultiplication)
{ {
// Test scalar * vector with float vectors // Test scalar * vector with float vectors
@@ -752,6 +833,375 @@ TEST(Matrix, ChainedOperations) {
ASSERT_FLOAT_EQ(m3[0][0], 2.0f); ASSERT_FLOAT_EQ(m3[0][0], 2.0f);
} }
// Helper class for SimpleContainer tests
class TestEntity {
public:
TestEntity() : m_Position(0.0f, 0.0f) {}
TestEntity(float x, float y) : m_Position(x, y) {}
TestEntity(WorldPos pos) : m_Position(pos) {}
WorldPos GetPosition() const { return m_Position; }
void SetPosition(WorldPos pos) { m_Position = pos; }
private:
WorldPos m_Position;
};
TEST(SimpleContainer, DefaultConstruction) {
// Test that SimpleContainer can be default constructed
SimpleContainer<TestEntity> container;
SUCCEED();
}
TEST(SimpleContainer, AddSingleItem) {
// Test adding a single item
SimpleContainer<TestEntity> container;
auto entity = std::make_shared<TestEntity>(5.0f, 10.0f);
container.Add(entity);
// Verify by getting items near the position
auto results = container.Get(WorldPos(5.0f, 10.0f), 1.0f);
ASSERT_EQ(results.size(), 1);
}
TEST(SimpleContainer, AddMultipleItems) {
// Test adding multiple items
SimpleContainer<TestEntity> container;
container.Add(std::make_shared<TestEntity>(0.0f, 0.0f));
container.Add(std::make_shared<TestEntity>(10.0f, 10.0f));
container.Add(std::make_shared<TestEntity>(20.0f, 20.0f));
// Verify by getting items near a position
auto results = container.Get(WorldPos(10.0f, 10.0f), 5.0f);
ASSERT_GE(results.size(), 1);
}
TEST(SimpleContainer, GetItemsInRadius) {
// Test getting items within a radius
SimpleContainer<TestEntity> container;
// Add items in a known pattern
container.Add(std::make_shared<TestEntity>(0.0f, 0.0f)); // At origin
container.Add(std::make_shared<TestEntity>(1.0f, 0.0f)); // 1 unit away
container.Add(std::make_shared<TestEntity>(0.0f, 1.0f)); // 1 unit away
container.Add(std::make_shared<TestEntity>(10.0f, 10.0f)); // Far away
// Get items within 2.0 units of origin
auto results = container.Get(WorldPos(0.0f, 0.0f), 2.0f);
// Should find the 3 nearby items (if Get is working correctly)
// Note: This depends on the actual implementation of Get
ASSERT_GE(results.size(), 0);
}
TEST(SimpleContainer, GetItemsEmptyContainer) {
// Test getting items from empty container
SimpleContainer<TestEntity> container;
auto results = container.Get(WorldPos(0.0f, 0.0f), 10.0f);
ASSERT_EQ(results.size(), 0);
}
TEST(SimpleContainer, WeakPtrValidAfterGet) {
// Test that weak_ptr returned from Get can be locked
SimpleContainer<TestEntity> container;
container.Add(std::make_shared<TestEntity>(5.0f, 5.0f));
auto results = container.Get(WorldPos(5.0f, 5.0f), 10.0f);
if (!results.empty()) {
auto locked = results[0].lock();
ASSERT_NE(locked, nullptr);
// Verify the position
WorldPos pos = locked->GetPosition();
ASSERT_FLOAT_EQ(pos.x(), 5.0f);
ASSERT_FLOAT_EQ(pos.y(), 5.0f);
}
}
TEST(SimpleContainer, UpdateAll) {
// Test that UpdateAll properly updates item positions
// For SimpleContainer, Update is a no-op but Get should still find moved items
SimpleContainer<TestEntity> container;
auto item1 = std::make_shared<TestEntity>(10.0f, 10.0f);
auto item2 = std::make_shared<TestEntity>(20.0f, 20.0f);
container.Add(item1);
container.Add(item2);
// Verify items exist at original positions
auto results_old1 = container.Get(WorldPos(10.0f, 10.0f), 1.0f);
auto results_old2 = container.Get(WorldPos(20.0f, 20.0f), 1.0f);
ASSERT_GE(results_old1.size(), 1);
ASSERT_GE(results_old2.size(), 1);
// Change positions
item1->SetPosition(WorldPos(50.0f, 50.0f));
item2->SetPosition(WorldPos(60.0f, 60.0f));
// Call UpdateAll
container.UpdateAll();
// For SimpleContainer, items should still be found at new positions
// (since Get checks actual item positions, not cached locations)
auto results_new1 = container.Get(WorldPos(50.0f, 50.0f), 1.0f);
auto results_new2 = container.Get(WorldPos(60.0f, 60.0f), 1.0f);
ASSERT_GE(results_new1.size(), 1);
ASSERT_GE(results_new2.size(), 1);
// Items should NOT be found at old positions anymore
auto results_old_check1 = container.Get(WorldPos(10.0f, 10.0f), 1.0f);
auto results_old_check2 = container.Get(WorldPos(20.0f, 20.0f), 1.0f);
ASSERT_EQ(results_old_check1.size(), 0);
ASSERT_EQ(results_old_check2.size(), 0);
}
TEST(SimpleContainer, Update) {
// Test that Update properly handles a single item position change
SimpleContainer<TestEntity> container;
auto item = std::make_shared<TestEntity>(15.0f, 15.0f);
container.Add(item);
// Verify item exists at original position
auto results_old = container.Get(WorldPos(15.0f, 15.0f), 1.0f);
ASSERT_GE(results_old.size(), 1);
// Change position
item->SetPosition(WorldPos(75.0f, 75.0f));
// Call Update
container.Update(item);
// Item should be found at new position
auto results_new = container.Get(WorldPos(75.0f, 75.0f), 1.0f);
ASSERT_GE(results_new.size(), 1);
// Item should NOT be found at old position
auto results_old_check = container.Get(WorldPos(15.0f, 15.0f), 1.0f);
ASSERT_EQ(results_old_check.size(), 0);
}
TEST(SimpleContainer, AddItemsWithSamePosition) {
// Test adding multiple items at the same position
SimpleContainer<TestEntity> container;
container.Add(std::make_shared<TestEntity>(5.0f, 5.0f));
container.Add(std::make_shared<TestEntity>(5.0f, 5.0f));
container.Add(std::make_shared<TestEntity>(5.0f, 5.0f));
auto results = container.Get(WorldPos(5.0f, 5.0f), 1.0f);
ASSERT_EQ(results.size(), 3);
}
TEST(PositionalContainer, DefaultConstruction) {
// Test that PositionalContainer can be constructed with size and chunks
WorldSize size(100.0f, 100.0f);
size_t chunks = 10;
PositionalContainer<TestEntity> container(size, chunks);
SUCCEED();
}
TEST(PositionalContainer, AddSingleItem) {
// Test adding a single item
WorldSize size(100.0f, 100.0f);
PositionalContainer<TestEntity> container(size, 10);
auto entity = std::make_shared<TestEntity>(5.0f, 10.0f);
container.Add(entity);
// Verify by getting items near the position
auto results = container.Get(WorldPos(5.0f, 10.0f), 1.0f);
ASSERT_GE(results.size(), 1);
}
TEST(PositionalContainer, AddMultipleItems) {
// Test adding multiple items
WorldSize size(100.0f, 100.0f);
PositionalContainer<TestEntity> container(size, 10);
container.Add(std::make_shared<TestEntity>(10.0f, 10.0f));
container.Add(std::make_shared<TestEntity>(20.0f, 20.0f));
container.Add(std::make_shared<TestEntity>(30.0f, 30.0f));
// Verify by getting items near a position
auto results = container.Get(WorldPos(20.0f, 20.0f), 5.0f);
ASSERT_GE(results.size(), 1);
}
TEST(PositionalContainer, GetItemsInRadius) {
// Test getting items within a radius
WorldSize size(100.0f, 100.0f);
PositionalContainer<TestEntity> container(size, 10);
// Add items in a known pattern
container.Add(std::make_shared<TestEntity>(50.0f, 50.0f)); // At center
container.Add(std::make_shared<TestEntity>(51.0f, 50.0f)); // 1 unit away
container.Add(std::make_shared<TestEntity>(50.0f, 51.0f)); // 1 unit away
container.Add(std::make_shared<TestEntity>(90.0f, 90.0f)); // Far away
// Get items within 2.0 units of center position
auto results = container.Get(WorldPos(50.0f, 50.0f), 2.0f);
// Should find the 3 nearby items
ASSERT_GE(results.size(), 0);
}
TEST(PositionalContainer, GetItemsEmptyContainer) {
// Test getting items from empty container
WorldSize size(100.0f, 100.0f);
PositionalContainer<TestEntity> container(size, 10);
auto results = container.Get(WorldPos(50.0f, 50.0f), 10.0f);
ASSERT_EQ(results.size(), 0);
}
TEST(PositionalContainer, WeakPtrValidAfterGet) {
// Test that weak_ptr returned from Get can be locked
WorldSize size(100.0f, 100.0f);
PositionalContainer<TestEntity> container(size, 10);
container.Add(std::make_shared<TestEntity>(50.0f, 50.0f));
auto results = container.Get(WorldPos(50.0f, 50.0f), 10.0f);
if (!results.empty()) {
auto locked = results[0].lock();
ASSERT_NE(locked, nullptr);
// Verify the position
WorldPos pos = locked->GetPosition();
ASSERT_FLOAT_EQ(pos.x(), 50.0f);
ASSERT_FLOAT_EQ(pos.y(), 50.0f);
}
}
TEST(PositionalContainer, UpdateAll) {
// Test that UpdateAll properly updates spatial index after position changes
WorldSize size(100.0f, 100.0f);
PositionalContainer<TestEntity> container(size, 10);
auto item1 = std::make_shared<TestEntity>(15.0f, 15.0f);
auto item2 = std::make_shared<TestEntity>(25.0f, 25.0f);
container.Add(item1);
container.Add(item2);
// Verify items exist at original positions
auto results_old1 = container.Get(WorldPos(15.0f, 15.0f), 2.0f);
auto results_old2 = container.Get(WorldPos(25.0f, 25.0f), 2.0f);
ASSERT_GE(results_old1.size(), 1);
ASSERT_GE(results_old2.size(), 1);
// Change positions to different grid chunks
item1->SetPosition(WorldPos(65.0f, 65.0f));
item2->SetPosition(WorldPos(75.0f, 75.0f));
// Call UpdateAll to refresh spatial index
container.UpdateAll();
// Items should be found at new positions
auto results_new1 = container.Get(WorldPos(65.0f, 65.0f), 2.0f);
auto results_new2 = container.Get(WorldPos(75.0f, 75.0f), 2.0f);
ASSERT_GE(results_new1.size(), 1);
ASSERT_GE(results_new2.size(), 1);
// Items should NOT be found at old positions anymore
auto results_old_check1 = container.Get(WorldPos(15.0f, 15.0f), 2.0f);
auto results_old_check2 = container.Get(WorldPos(25.0f, 25.0f), 2.0f);
ASSERT_EQ(results_old_check1.size(), 0);
ASSERT_EQ(results_old_check2.size(), 0);
}
TEST(PositionalContainer, Update) {
// Test that Update properly updates spatial index for a single item
WorldSize size(100.0f, 100.0f);
PositionalContainer<TestEntity> container(size, 10);
auto item = std::make_shared<TestEntity>(20.0f, 20.0f);
container.Add(item);
// Verify item exists at original position
auto results_old = container.Get(WorldPos(20.0f, 20.0f), 2.0f);
ASSERT_GE(results_old.size(), 1);
// Change position to different grid chunk
item->SetPosition(WorldPos(80.0f, 80.0f));
// Call Update to refresh spatial index
container.Update(item);
// Item should be found at new position
auto results_new = container.Get(WorldPos(80.0f, 80.0f), 2.0f);
ASSERT_GE(results_new.size(), 1);
// Item should NOT be found at old position
auto results_old_check = container.Get(WorldPos(20.0f, 20.0f), 2.0f);
ASSERT_EQ(results_old_check.size(), 0);
}
TEST(PositionalContainer, AddItemsWithSamePosition) {
// Test adding multiple items at the same position
WorldSize size(100.0f, 100.0f);
PositionalContainer<TestEntity> container(size, 10);
container.Add(std::make_shared<TestEntity>(50.0f, 50.0f));
container.Add(std::make_shared<TestEntity>(50.0f, 50.0f));
container.Add(std::make_shared<TestEntity>(50.0f, 50.0f));
auto results = container.Get(WorldPos(50.0f, 50.0f), 1.0f);
ASSERT_GE(results.size(), 0);
}
TEST(PositionalContainer, AddOutOfBounds) {
// Test adding items outside the grid bounds
WorldSize size(100.0f, 100.0f);
PositionalContainer<TestEntity> container(size, 10);
// Try to add items outside bounds
auto result1 = container.Add(std::make_shared<TestEntity>(-5.0f, 50.0f));
auto result2 = container.Add(std::make_shared<TestEntity>(105.0f, 50.0f));
auto result3 = container.Add(std::make_shared<TestEntity>(50.0f, -5.0f));
auto result4 = container.Add(std::make_shared<TestEntity>(50.0f, 105.0f));
// All should return false
ASSERT_FALSE(result1);
ASSERT_FALSE(result2);
ASSERT_FALSE(result3);
ASSERT_FALSE(result4);
}
TEST(PositionalContainer, GetOutOfBounds) {
// Test getting items with center or radius extending out of bounds
WorldSize size(100.0f, 100.0f);
PositionalContainer<TestEntity> container(size, 10);
container.Add(std::make_shared<TestEntity>(50.0f, 50.0f));
// Query that extends out of bounds should return empty
auto results = container.Get(WorldPos(95.0f, 95.0f), 10.0f);
ASSERT_EQ(results.size(), 0);
}
TEST(PositionalContainer, ItemsInDifferentChunks) {
// Test that items in different grid chunks can be retrieved correctly
WorldSize size(100.0f, 100.0f);
PositionalContainer<TestEntity> container(size, 10);
// Add items in different chunks (grid is 10x10, so each chunk is 10x10 units)
container.Add(std::make_shared<TestEntity>(15.0f, 15.0f)); // Chunk (1,1)
container.Add(std::make_shared<TestEntity>(25.0f, 25.0f)); // Chunk (2,2)
container.Add(std::make_shared<TestEntity>(75.0f, 75.0f)); // Chunk (7,7)
// Query in chunk (1,1)
auto results1 = container.Get(WorldPos(15.0f, 15.0f), 3.0f);
ASSERT_GE(results1.size(), 1);
// Query in chunk (7,7)
auto results2 = container.Get(WorldPos(75.0f, 75.0f), 3.0f);
ASSERT_GE(results2.size(), 1);
}
int main(int argc, char **argv) { int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv); ::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS(); return RUN_ALL_TESTS();

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 406 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 93 KiB

View File

@@ -0,0 +1,9 @@
#!/bin/sh
# Copy this file to .git/hooks
# Run clang-format before commiting
files=$(git diff --cached --name-only --diff-filter=ACM | grep -E '\.(cpp|hpp)$')
[ -z "$files" ] && exit 0
clang-format -i $files
git add $files