Refactor vec, add domain-specific types (world, window, tile)

This commit is contained in:
Jan Mrna 2025-10-02 21:42:44 +02:00
parent 80279288fb
commit 4e9674b77c
2 changed files with 239 additions and 212 deletions

View File

@ -5,6 +5,7 @@
#include "log.hpp"
#include "math.hpp"
#include "sprite.hpp"
#include "coorginates.hpp"
Entity::Entity(WorldPos position) : m_Position(position) {
LOG_DEBUG("spawning entity at position ", position);
@ -25,13 +26,13 @@ void Entity::ZeroActualVelocityInDirection(WorldPos direction) {
// where e1 is formed by the direction where we want to zero-out
// the velocity, and e2 is the orthogonal vector.
// Scalars q1, q2 are coordinates for e1, e2 basis.
WorldPos e1 = direction.normalized();
WorldPos e2 = e1.orthogonal();
WorldPos e1 = direction.GetNormalized();
WorldPos e2 = e1.GetOrthogonal();
// q1 * e1 + q2 * e2 = v, from this follows:
auto &v = GetActualVelocity();
float q2 = (v.y * e1.x - v.x * e1.y) / (e2.y * e1.x - e2.x * e1.y);
float q1 = (v.x - q2 * e2.x) / e1.x;
float q2 = (v.y() * e1.x() - v.x() * e1.y()) / (e2.y() * e1.x() - e2.x() * e1.y());
float q1 = (v.x() - q2 * e2.x()) / e1.x();
// We then zero-out the q1, but only if it's positive - meaning
// it is aiming in the direction of "direction", not out.

View File

@ -1,21 +1,19 @@
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <concepts>
#include <initializer_list>
#include <iostream>
#include <utility>
#include <algorithm>
#include <ranges>
#include <numeric>
#include <ranges>
#include <utility>
template <typename T>
requires std::floating_point<T>
static inline bool equalEpsilon(const T& a, const T& b)
{
constexpr auto epsilon = [](){
requires std::floating_point<T>
static inline bool equalEpsilon(const T &a, const T &b) {
constexpr auto epsilon = []() {
if constexpr (std::is_same_v<T, float>) {
return T{1e-5};
} else {
@ -29,46 +27,41 @@ static inline bool equalEpsilon(const T& a, const T& b)
return std::abs(a - b) < epsilon;
}
struct Any {};
template <typename T, size_t N>
class vec {
template <typename T, size_t N, typename Tag = Any> class vec {
public:
vec() : m_Array{} {}
template <typename... ArgsT>
requires (std::same_as<ArgsT, T> && ...) && (sizeof...(ArgsT) == N)
requires(std::same_as<ArgsT, T> && ...) && (sizeof...(ArgsT) == N)
vec(ArgsT... args) : m_Array{args...} {}
const T& operator[](size_t index) const
{
const T &operator[](size_t index) const {
// we leave run-time checks to the underlying std::array
return m_Array[index];
}
T& operator[](size_t index)
{
T &operator[](size_t index) {
// we leave run-time checks to the underlying std::array
return m_Array[index];
}
friend std::ostream &operator<<(std::ostream &os, const vec &obj)
{
friend std::ostream &operator<<(std::ostream &os, const vec &obj) {
os << "( ";
for (const auto& element : obj.m_Array) {
for (const auto &element : obj.m_Array) {
os << element << " ";
}
os << ")";
return os;
}
//
// binary operators
//
friend bool operator==(const vec& a, const vec& b)
{
for (const auto& [u, v] : std::views::zip(a.m_Array,b.m_Array)) {
friend bool operator==(const vec &a, const vec &b) {
for (const auto &[u, v] : std::views::zip(a.m_Array, b.m_Array)) {
if (!equalEpsilon(u, v)) {
return false;
}
@ -76,40 +69,35 @@ public:
return true;
}
friend bool operator!=(const vec& a, const vec& b)
{
return !(a == b);
}
friend bool operator!=(const vec &a, const vec &b) { return !(a == b); }
friend vec operator+(const vec& a, const vec& b)
{
vec<T,N> c;
std::ranges::transform(a.m_Array, b.m_Array, c.m_Array.begin(), std::plus{});
friend vec operator+(const vec &a, const vec &b) {
vec<T, N> c;
std::ranges::transform(a.m_Array, b.m_Array, c.m_Array.begin(),
std::plus{});
return c;
}
friend vec operator-(const vec& a, const vec& b)
{
vec<T,N> c;
std::ranges::transform(a.m_Array, b.m_Array, c.m_Array.begin(), std::minus{});
friend vec operator-(const vec &a, const vec &b) {
vec<T, N> c;
std::ranges::transform(a.m_Array, b.m_Array, c.m_Array.begin(),
std::minus{});
return c;
}
friend vec operator*(const vec& a, const T& scalar)
{
vec<T,N> c;
std::ranges::transform(a.m_Array, std::views::repeat(scalar), c.m_Array.begin(), std::multiplies{});
friend vec operator*(const vec &a, const T &scalar) {
vec<T, N> c;
std::ranges::transform(a.m_Array, std::views::repeat(scalar),
c.m_Array.begin(), std::multiplies{});
return c;
}
friend vec operator*(const T& scalar, const vec& a) {
return a * scalar;
}
friend vec operator*(const T &scalar, const vec &a) { return a * scalar; }
friend vec operator/(const vec& a, const T& scalar)
{
vec<T,N> c;
std::ranges::transform(a.m_Array, std::views::repeat(scalar), c.m_Array.begin(), std::divides{});
friend vec operator/(const vec &a, const T &scalar) {
vec<T, N> c;
std::ranges::transform(a.m_Array, std::views::repeat(scalar),
c.m_Array.begin(), std::divides{});
return c;
}
@ -117,44 +105,33 @@ public:
// compound-assignment operators
//
vec& operator+=(const vec& b)
{
vec& a = *this;
std::ranges::transform(a.m_Array, b.m_Array, a.m_Array.begin(), std::plus{});
vec &operator+=(const vec &b) {
vec &a = *this;
std::ranges::transform(a.m_Array, b.m_Array, a.m_Array.begin(),
std::plus{});
return a;
}
vec& operator-=(const vec& b)
{
vec& a = *this;
std::ranges::transform(a.m_Array, b.m_Array, a.m_Array.begin(), std::minus{});
vec &operator-=(const vec &b) {
vec &a = *this;
std::ranges::transform(a.m_Array, b.m_Array, a.m_Array.begin(),
std::minus{});
return a;
}
//
// Utility functions
//
T LengthSquared() const
{
return std::transform_reduce(
m_Array.begin(), m_Array.end(),
T{0.0},
std::plus{},
[](T x){
return x*x;
}
);
T LengthSquared() const {
return std::transform_reduce(m_Array.begin(), m_Array.end(), T{0.0},
std::plus{}, [](T x) { return x * x; });
}
T Length() const
{
return std::sqrt(LengthSquared());
}
T Length() const { return std::sqrt(LengthSquared()); }
T DistanceTo(const vec& b) const {
const vec& a = *this;
T DistanceTo(const vec &b) const {
const vec &a = *this;
return (a - b).Length();
}
@ -162,27 +139,26 @@ public:
// In-place vector operations
//
void Normalize()
{
void Normalize() {
T length = Length();
if (equalEpsilon(length, T{0}))
return;
std::ranges::transform(m_Array, std::views::repeat(length), m_Array.begin(), std::divides{});
std::ranges::transform(m_Array, std::views::repeat(length), m_Array.begin(),
std::divides{});
}
//
// Methods returning new object
//
vec GetNormalized() const
{
vec GetNormalized() const {
vec tmp = *this;
tmp.Normalize();
return tmp;
}
vec GetOrthogonal() const requires (N == 2)
vec GetOrthogonal() const
requires(N == 2)
{
vec tmp = *this;
@ -192,15 +168,53 @@ public:
return tmp;
}
// const T& x = m_Array[0];
// const T& y = m_Array[1];
// const T& z = m_Array[2];
//
// Helpers
//
const T &x() const
requires(N >= 1)
{
return m_Array[0];
}
T &x()
requires(N >= 1)
{
return m_Array[0];
}
const T &y() const
requires(N >= 2)
{
return m_Array[1];
}
T &y()
requires(N >= 2)
{
return m_Array[1];
}
const T &z() const
requires(N >= 3)
{
return m_Array[2];
}
T &z()
requires(N >= 3)
{
return m_Array[2];
}
private:
std::array<T,N> m_Array;
std::array<T, N> m_Array;
};
//
// Aliases
//
using vec2 = vec<float, 2>;
using vec3 = vec<float, 3>;
@ -215,132 +229,144 @@ using uvec2 = vec<std::uint32_t, 2>;
using uvec3 = vec<std::uint32_t, 3>;
using uvec4 = vec<std::uint32_t, 4>;
constexpr double EQUALITY_LIMIT = 1e-6;
template <typename T> struct Vec2D {
public:
Vec2D() = default;
~Vec2D() = default;
// tags for differentiating between domains
struct WorldTag {
} struct WindowTag {
} struct TileTag {
}
template <typename U>
Vec2D(Vec2D<U> other) {
this->x = static_cast<T>(other.x);
this->y = static_cast<T>(other.y);
}
// types for each domain
using WorldPos = vec<float, 2, WorldTag>;
using WindowPos = vec<float, 2, WindowTag>;
using TilePos = vec<int32_t, 2, WindowTag>;
Vec2D& operator+=(const Vec2D &other) {
x += other.x;
y += other.y;
return *this;
}
template <typename U>
requires std::is_arithmetic_v<U>
Vec2D& operator/=(U k) {
this->x /= static_cast<T>(k);
this->y /= static_cast<T>(k);
return *this;
}
friend Vec2D operator+(const Vec2D &a, const Vec2D &b) {
return Vec2D{a.x + b.x, a.y + b.y};
}
friend Vec2D operator-(const Vec2D &a, const Vec2D &b) {
return Vec2D{a.x - b.x, a.y - b.y};
}
template <typename U>
requires std::is_arithmetic_v<U>
friend Vec2D operator*(U k, const Vec2D &v)
{
return Vec2D{k * v.x, k * v.y};
}
template <typename U>
requires std::is_arithmetic_v<U>
friend Vec2D operator/(const Vec2D &v, U k)
{
return Vec2D{v.x / k, v.y / k};
}
friend bool operator==(const Vec2D &a, const Vec2D &b) {
if constexpr (std::is_integral_v<T>) {
return a.x == b.x && a.y == b.y;
} else if constexpr (std::is_floating_point_v<T>) {
return a.distance(b) < EQUALITY_LIMIT;
} else {
static_assert("Unhandled comparison");
}
}
Vec2D operator*(float b) const { return Vec2D{b * x, b * y}; }
T distance_squared(const Vec2D &other) const {
T dx = x - other.x;
T dy = y - other.y;
return dx * dx + dy * dy;
}
T distance(const Vec2D &other) const
requires std::floating_point<T>
{
return sqrt(distance_squared(other));
}
void normalize()
requires std::floating_point<T>
{
auto length = sqrt(x * x + y * y);
if (length < EQUALITY_LIMIT) {
x = y = 0;
} else {
x /= length;
y /= length;
}
}
Vec2D normalized()
requires std::floating_point<T>
{
Vec2D v(*this);
v.normalize();
return v;
}
Vec2D orthogonal() const
{
Vec2D v(*this);
std::swap(v.x, v.y);
v.x = -v.x;
return v;
}
template <typename U> Vec2D(std::initializer_list<U> list) {
assert(list.size() == 2);
auto first_element = *list.begin();
auto second_element = *(list.begin() + 1);
x = static_cast<T>(first_element);
y = static_cast<T>(second_element);
}
T x, y;
friend std::ostream &operator<<(std::ostream &os, const Vec2D &obj) {
os << "( " << obj.x << ", " << obj.y << ")";
return os;
}
};
using TilePos = Vec2D<int>;
using WorldPos = Vec2D<float>;
using WindowPos = Vec2D<float>;
//
// Utils
//
struct TilePosHash {
std::size_t operator()(const TilePos& p) const noexcept {
std::size_t h1 = std::hash<int>{}(p.x);
std::size_t h2 = std::hash<int>{}(p.y);
return h1 ^ (h2 + 0x9e3779b9 + (h1<<6) + (h1>>2));
std::size_t operator()(const TilePos &p) const noexcept {
std::size_t h1 = std::hash<int>{}(p.x());
std::size_t h2 = std::hash<int>{}(p.y());
return h1 ^ (h2 + 0x9e3779b9 + (h1 << 6) + (h1 >> 2));
}
};
// old stuff - TODO delete
// constexpr double EQUALITY_LIMIT = 1e-6;
// template <typename T> struct Vec2D {
// public:
// Vec2D() = default;
// ~Vec2D() = default;
//
// template <typename U>
// Vec2D(Vec2D<U> other) {
// this->x = static_cast<T>(other.x);
// this->y = static_cast<T>(other.y);
// }
//
// Vec2D& operator+=(const Vec2D &other) {
// x += other.x;
// y += other.y;
// return *this;
// }
//
// template <typename U>
// requires std::is_arithmetic_v<U>
// Vec2D& operator/=(U k) {
// this->x /= static_cast<T>(k);
// this->y /= static_cast<T>(k);
// return *this;
// }
//
// friend Vec2D operator+(const Vec2D &a, const Vec2D &b) {
// return Vec2D{a.x + b.x, a.y + b.y};
// }
//
// friend Vec2D operator-(const Vec2D &a, const Vec2D &b) {
// return Vec2D{a.x - b.x, a.y - b.y};
// }
//
// template <typename U>
// requires std::is_arithmetic_v<U>
// friend Vec2D operator*(U k, const Vec2D &v)
// {
// return Vec2D{k * v.x, k * v.y};
// }
//
// template <typename U>
// requires std::is_arithmetic_v<U>
// friend Vec2D operator/(const Vec2D &v, U k)
// {
// return Vec2D{v.x / k, v.y / k};
// }
//
// friend bool operator==(const Vec2D &a, const Vec2D &b) {
// if constexpr (std::is_integral_v<T>) {
// return a.x == b.x && a.y == b.y;
// } else if constexpr (std::is_floating_point_v<T>) {
// return a.distance(b) < EQUALITY_LIMIT;
// } else {
// static_assert("Unhandled comparison");
// }
// }
//
// Vec2D operator*(float b) const { return Vec2D{b * x, b * y}; }
//
// T distance_squared(const Vec2D &other) const {
// T dx = x - other.x;
// T dy = y - other.y;
// return dx * dx + dy * dy;
// }
//
// T distance(const Vec2D &other) const
// requires std::floating_point<T>
// {
// return sqrt(distance_squared(other));
// }
//
// void normalize()
// requires std::floating_point<T>
// {
// auto length = sqrt(x * x + y * y);
// if (length < EQUALITY_LIMIT) {
// x = y = 0;
// } else {
// x /= length;
// y /= length;
// }
// }
//
// Vec2D normalized()
// requires std::floating_point<T>
// {
// Vec2D v(*this);
// v.normalize();
// return v;
// }
//
// Vec2D orthogonal() const
// {
// Vec2D v(*this);
//
// std::swap(v.x, v.y);
// v.x = -v.x;
// return v;
// }
//
// template <typename U> Vec2D(std::initializer_list<U> list) {
// assert(list.size() == 2);
// auto first_element = *list.begin();
// auto second_element = *(list.begin() + 1);
// x = static_cast<T>(first_element);
// y = static_cast<T>(second_element);
// }
//
// T x, y;
//
// friend std::ostream &operator<<(std::ostream &os, const Vec2D &obj) {
// os << "( " << obj.x << ", " << obj.y << ")";
// return os;
// }
// };